Nuprl Lemma : C_Struct_wf
∀[fields:(Atom × C_TYPE()) List]. (C_Struct(fields) ∈ C_TYPE())
Proof
Definitions occuring in Statement :
C_Struct: C_Struct(fields)
,
C_TYPE: C_TYPE()
,
list: T List
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
product: x:A × B[x]
,
atom: Atom
Lemmas :
C_TYPEco-ext,
subtype_rel_list,
C_TYPE_wf,
C_TYPEco_wf,
subtype_rel_product,
eq_atom_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_atom,
unit_wf2,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_atom,
list_wf,
nat_wf,
add_nat_wf,
false_wf,
le_wf,
sum-nat,
length_wf_nat,
C_TYPE_size_wf,
select_wf,
sq_stable__le,
int_seg_wf,
length_wf,
value-type-has-value,
set-value-type,
int-value-type,
has-value_wf-partial,
C_TYPEco_size_wf
\mforall{}[fields:(Atom \mtimes{} C\_TYPE()) List]. (C\_Struct(fields) \mmember{} C\_TYPE())
Date html generated:
2015_07_17-AM-07_42_10
Last ObjectModification:
2015_01_27-AM-09_47_29
Home
Index