Nuprl Lemma : binary-tree-definition

[A:Type]. ∀[R:A ─→ binary-tree() ─→ ℙ].
  ((∀val:ℤ{x:A| R[x;btr_Leaf(val)]} )
   (∀left,right:binary-tree().  ({x:A| R[x;left]}   {x:A| R[x;right]}   {x:A| R[x;btr_Node(left;right)]} ))
   {∀v:binary-tree(). {x:A| R[x;v]} })


Proof




Definitions occuring in Statement :  btr_Node: btr_Node(left;right) btr_Leaf: btr_Leaf(val) binary-tree: binary-tree() uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ─→ B[x] int: universe: Type
Lemmas :  binary-tree-induction set_wf all_wf binary-tree_wf btr_Node_wf btr_Leaf_wf
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  binary-tree()  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}val:\mBbbZ{}.  \{x:A|  R[x;btr\_Leaf(val)]\}  )
    {}\mRightarrow{}  (\mforall{}left,right:binary-tree().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;btr\_Node(left;right)]\}  ))
    {}\mRightarrow{}  \{\mforall{}v:binary-tree().  \{x:A|  R[x;v]\}  \})



Date html generated: 2015_07_17-AM-07_52_19
Last ObjectModification: 2015_01_27-AM-09_35_43

Home Index