Nuprl Lemma : binary-tree-definition
∀[A:Type]. ∀[R:A ─→ binary-tree() ─→ ℙ].
  ((∀val:ℤ. {x:A| R[x;btr_Leaf(val)]} )
  
⇒ (∀left,right:binary-tree().  ({x:A| R[x;left]}  
⇒ {x:A| R[x;right]}  
⇒ {x:A| R[x;btr_Node(left;right)]} ))
  
⇒ {∀v:binary-tree(). {x:A| R[x;v]} })
Proof
Definitions occuring in Statement : 
btr_Node: btr_Node(left;right)
, 
btr_Leaf: btr_Leaf(val)
, 
binary-tree: binary-tree()
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ─→ B[x]
, 
int: ℤ
, 
universe: Type
Lemmas : 
binary-tree-induction, 
set_wf, 
all_wf, 
binary-tree_wf, 
btr_Node_wf, 
btr_Leaf_wf
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  binary-tree()  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}val:\mBbbZ{}.  \{x:A|  R[x;btr\_Leaf(val)]\}  )
    {}\mRightarrow{}  (\mforall{}left,right:binary-tree().
                (\{x:A|  R[x;left]\}    {}\mRightarrow{}  \{x:A|  R[x;right]\}    {}\mRightarrow{}  \{x:A|  R[x;btr\_Node(left;right)]\}  ))
    {}\mRightarrow{}  \{\mforall{}v:binary-tree().  \{x:A|  R[x;v]\}  \})
Date html generated:
2015_07_17-AM-07_52_19
Last ObjectModification:
2015_01_27-AM-09_35_43
Home
Index