Nuprl Lemma : binary-tree-definition
∀[A:Type]. ∀[R:A ─→ binary-tree() ─→ ℙ].
((∀val:ℤ. {x:A| R[x;btr_Leaf(val)]} )
⇒ (∀left,right:binary-tree(). ({x:A| R[x;left]}
⇒ {x:A| R[x;right]}
⇒ {x:A| R[x;btr_Node(left;right)]} ))
⇒ {∀v:binary-tree(). {x:A| R[x;v]} })
Proof
Definitions occuring in Statement :
btr_Node: btr_Node(left;right)
,
btr_Leaf: btr_Leaf(val)
,
binary-tree: binary-tree()
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
guard: {T}
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
set: {x:A| B[x]}
,
function: x:A ─→ B[x]
,
int: ℤ
,
universe: Type
Lemmas :
binary-tree-induction,
set_wf,
all_wf,
binary-tree_wf,
btr_Node_wf,
btr_Leaf_wf
\mforall{}[A:Type]. \mforall{}[R:A {}\mrightarrow{} binary-tree() {}\mrightarrow{} \mBbbP{}].
((\mforall{}val:\mBbbZ{}. \{x:A| R[x;btr\_Leaf(val)]\} )
{}\mRightarrow{} (\mforall{}left,right:binary-tree().
(\{x:A| R[x;left]\} {}\mRightarrow{} \{x:A| R[x;right]\} {}\mRightarrow{} \{x:A| R[x;btr\_Node(left;right)]\} ))
{}\mRightarrow{} \{\mforall{}v:binary-tree(). \{x:A| R[x;v]\} \})
Date html generated:
2015_07_17-AM-07_52_19
Last ObjectModification:
2015_01_27-AM-09_35_43
Home
Index