Nuprl Lemma : btr_Leaf_wf
∀[val:ℤ]. (btr_Leaf(val) ∈ binary-tree())
Proof
Definitions occuring in Statement :
btr_Leaf: btr_Leaf(val)
,
binary-tree: binary-tree()
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
int: ℤ
Lemmas :
binary-treeco-ext,
eq_atom_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_atom,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_atom,
binary-treeco_wf,
false_wf,
le_wf,
nat_wf,
has-value_wf_base,
set_subtype_base,
int_subtype_base,
has-value_wf-partial,
set-value-type,
int-value-type,
binary-treeco_size_wf
\mforall{}[val:\mBbbZ{}]. (btr\_Leaf(val) \mmember{} binary-tree())
Date html generated:
2015_07_17-AM-07_51_49
Last ObjectModification:
2015_01_27-AM-09_35_40
Home
Index