Nuprl Lemma : btr_Leaf_wf

[val:ℤ]. (btr_Leaf(val) ∈ binary-tree())


Proof




Definitions occuring in Statement :  btr_Leaf: btr_Leaf(val) binary-tree: binary-tree() uall: [x:A]. B[x] member: t ∈ T int:
Lemmas :  binary-treeco-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom binary-treeco_wf false_wf le_wf nat_wf has-value_wf_base set_subtype_base int_subtype_base has-value_wf-partial set-value-type int-value-type binary-treeco_size_wf
\mforall{}[val:\mBbbZ{}].  (btr\_Leaf(val)  \mmember{}  binary-tree())



Date html generated: 2015_07_17-AM-07_51_49
Last ObjectModification: 2015_01_27-AM-09_35_40

Home Index