Nuprl Lemma : btr_Node_wf

[left,right:binary-tree()].  (btr_Node(left;right) ∈ binary-tree())


Proof




Definitions occuring in Statement :  btr_Node: btr_Node(left;right) binary-tree: binary-tree() uall: [x:A]. B[x] member: t ∈ T
Lemmas :  binary-treeco-ext binary-treeco_wf eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom add_nat_wf false_wf le_wf binary-tree_size_wf nat_wf value-type-has-value set-value-type int-value-type has-value_wf-partial binary-treeco_size_wf binary-tree_wf
\mforall{}[left,right:binary-tree()].    (btr\_Node(left;right)  \mmember{}  binary-tree())



Date html generated: 2015_07_17-AM-07_51_53
Last ObjectModification: 2015_01_27-AM-09_35_05

Home Index