Nuprl Lemma : btr_Node_wf
∀[left,right:binary-tree()].  (btr_Node(left;right) ∈ binary-tree())
Proof
Definitions occuring in Statement : 
btr_Node: btr_Node(left;right)
, 
binary-tree: binary-tree()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas : 
binary-treeco-ext, 
binary-treeco_wf, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
add_nat_wf, 
false_wf, 
le_wf, 
binary-tree_size_wf, 
nat_wf, 
value-type-has-value, 
set-value-type, 
int-value-type, 
has-value_wf-partial, 
binary-treeco_size_wf, 
binary-tree_wf
\mforall{}[left,right:binary-tree()].    (btr\_Node(left;right)  \mmember{}  binary-tree())
Date html generated:
2015_07_17-AM-07_51_53
Last ObjectModification:
2015_01_27-AM-09_35_05
Home
Index