Nuprl Lemma : binary-tree-induction

[P:binary-tree() ─→ ℙ]
  ((∀val:ℤP[btr_Leaf(val)])
   (∀left,right:binary-tree().  (P[left]  P[right]  P[btr_Node(left;right)]))
   {∀v:binary-tree(). P[v]})


Proof




Definitions occuring in Statement :  btr_Node: btr_Node(left;right) btr_Leaf: btr_Leaf(val) binary-tree: binary-tree() uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ─→ B[x] int:
Lemmas :  uniform-comp-nat-induction all_wf isect_wf le_wf binary-tree_size_wf nat_wf less_than_wf binary-tree-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel subtract-is-less lelt_wf uall_wf int_seg_wf le_weakening binary-tree_wf btr_Node_wf btr_Leaf_wf
\mforall{}[P:binary-tree()  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}val:\mBbbZ{}.  P[btr\_Leaf(val)])
    {}\mRightarrow{}  (\mforall{}left,right:binary-tree().    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[btr\_Node(left;right)]))
    {}\mRightarrow{}  \{\mforall{}v:binary-tree().  P[v]\})



Date html generated: 2015_07_17-AM-07_52_17
Last ObjectModification: 2015_01_27-AM-09_35_51

Home Index