Nuprl Lemma : binary-tree-induction
∀[P:binary-tree() ─→ ℙ]
  ((∀val:ℤ. P[btr_Leaf(val)])
  
⇒ (∀left,right:binary-tree().  (P[left] 
⇒ P[right] 
⇒ P[btr_Node(left;right)]))
  
⇒ {∀v:binary-tree(). P[v]})
Proof
Definitions occuring in Statement : 
btr_Node: btr_Node(left;right)
, 
btr_Leaf: btr_Leaf(val)
, 
binary-tree: binary-tree()
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ─→ B[x]
, 
int: ℤ
Lemmas : 
uniform-comp-nat-induction, 
all_wf, 
isect_wf, 
le_wf, 
binary-tree_size_wf, 
nat_wf, 
less_than_wf, 
binary-tree-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
subtract_wf, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
subtract-is-less, 
lelt_wf, 
uall_wf, 
int_seg_wf, 
le_weakening, 
binary-tree_wf, 
btr_Node_wf, 
btr_Leaf_wf
\mforall{}[P:binary-tree()  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}val:\mBbbZ{}.  P[btr\_Leaf(val)])
    {}\mRightarrow{}  (\mforall{}left,right:binary-tree().    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[btr\_Node(left;right)]))
    {}\mRightarrow{}  \{\mforall{}v:binary-tree().  P[v]\})
Date html generated:
2015_07_17-AM-07_52_17
Last ObjectModification:
2015_01_27-AM-09_35_51
Home
Index