Nuprl Lemma : binary-tree-ext

binary-tree() ≡ lbl:Atom × if lbl =a "Leaf" then ℤ
                           if lbl =a "Node" then left:binary-tree() × binary-tree()
                           else Void
                           fi 


Proof




Definitions occuring in Statement :  binary-tree: binary-tree() ifthenelse: if then else fi  eq_atom: =a y ext-eq: A ≡ B product: x:A × B[x] int: token: "$token" atom: Atom void: Void
Lemmas :  binary-treeco-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom value-type-has-value int-value-type has-value_wf-partial nat_wf set-value-type le_wf binary-treeco_size_wf binary-tree_wf binary-treeco_wf add-nat false_wf binary-tree_size_wf nat_properties
binary-tree()  \mequiv{}  lbl:Atom  \mtimes{}  if  lbl  =a  "Leaf"  then  \mBbbZ{}
                                                      if  lbl  =a  "Node"  then  left:binary-tree()  \mtimes{}  binary-tree()
                                                      else  Void
                                                      fi 



Date html generated: 2015_07_17-AM-07_51_45
Last ObjectModification: 2015_01_29-PM-04_39_02

Home Index