Nuprl Lemma : bm_cnt_prop_pos
∀[T,Key:Type]. ∀[m:binary_map(T;Key)].  0 ≤ bm_numItems(m) supposing ↑bm_cnt_prop(m)
Proof
Definitions occuring in Statement : 
bm_numItems: bm_numItems(m)
, 
bm_cnt_prop: bm_cnt_prop(m)
, 
binary_map: binary_map(T;Key)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
natural_number: $n
, 
universe: Type
Lemmas : 
bm_count_prop, 
le_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
bm_count_prop_pos, 
less_than_wf, 
assert_wf, 
bm_cnt_prop_wf, 
binary_map_wf
\mforall{}[T,Key:Type].  \mforall{}[m:binary\_map(T;Key)].    0  \mleq{}  bm\_numItems(m)  supposing  \muparrow{}bm\_cnt\_prop(m)
Date html generated:
2015_07_17-AM-08_18_48
Last ObjectModification:
2015_02_03-PM-09_47_43
Home
Index