Nuprl Lemma : bm_cnt_prop_pos

[T,Key:Type]. ∀[m:binary_map(T;Key)].  0 ≤ bm_numItems(m) supposing ↑bm_cnt_prop(m)


Proof




Definitions occuring in Statement :  bm_numItems: bm_numItems(m) bm_cnt_prop: bm_cnt_prop(m) binary_map: binary_map(T;Key) assert: b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B natural_number: $n universe: Type
Lemmas :  bm_count_prop le_wf squash_wf true_wf iff_weakening_equal bm_count_prop_pos less_than_wf assert_wf bm_cnt_prop_wf binary_map_wf
\mforall{}[T,Key:Type].  \mforall{}[m:binary\_map(T;Key)].    0  \mleq{}  bm\_numItems(m)  supposing  \muparrow{}bm\_cnt\_prop(m)



Date html generated: 2015_07_17-AM-08_18_48
Last ObjectModification: 2015_02_03-PM-09_47_43

Home Index