Nuprl Lemma : bm_count_prop

[T,Key:Type]. ∀[m:binary_map(T;Key)].  bm_numItems(m) bm_count(m) ∈ ℤ supposing ↑bm_cnt_prop(m)


Proof




Definitions occuring in Statement :  bm_count: bm_count(m) bm_numItems: bm_numItems(m) bm_cnt_prop: bm_cnt_prop(m) binary_map: binary_map(T;Key) assert: b uimplies: supposing a uall: [x:A]. B[x] int: universe: Type equal: t ∈ T
Lemmas :  binary_map-induction isect_wf assert_wf bm_cnt_prop_wf equal_wf bm_numItems_wf bm_count_wf bm_numItems_E_reduce_lemma bm_count_E_reduce_lemma bm_cnt_prop_E btrue_wf bm_numItems_T bm_count_T bm_cnt_prop_T bm_T_wf iff_weakening_equal binary_map_wf add_functionality_wrt_eq
\mforall{}[T,Key:Type].  \mforall{}[m:binary\_map(T;Key)].    bm\_numItems(m)  =  bm\_count(m)  supposing  \muparrow{}bm\_cnt\_prop(m)



Date html generated: 2015_07_17-AM-08_18_46
Last ObjectModification: 2015_02_03-PM-09_47_45

Home Index