Nuprl Lemma : bm_count_prop
∀[T,Key:Type]. ∀[m:binary_map(T;Key)].  bm_numItems(m) = bm_count(m) ∈ ℤ supposing ↑bm_cnt_prop(m)
Proof
Definitions occuring in Statement : 
bm_count: bm_count(m)
, 
bm_numItems: bm_numItems(m)
, 
bm_cnt_prop: bm_cnt_prop(m)
, 
binary_map: binary_map(T;Key)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
binary_map-induction, 
isect_wf, 
assert_wf, 
bm_cnt_prop_wf, 
equal_wf, 
bm_numItems_wf, 
bm_count_wf, 
bm_numItems_E_reduce_lemma, 
bm_count_E_reduce_lemma, 
bm_cnt_prop_E, 
btrue_wf, 
bm_numItems_T, 
bm_count_T, 
bm_cnt_prop_T, 
bm_T_wf, 
iff_weakening_equal, 
binary_map_wf, 
add_functionality_wrt_eq
\mforall{}[T,Key:Type].  \mforall{}[m:binary\_map(T;Key)].    bm\_numItems(m)  =  bm\_count(m)  supposing  \muparrow{}bm\_cnt\_prop(m)
Date html generated:
2015_07_17-AM-08_18_46
Last ObjectModification:
2015_02_03-PM-09_47_45
Home
Index