Nuprl Lemma : int-decr-map-inDom-prop2

[Value:Type]. ∀[k:ℤ]. ∀[m:int-decr-map-type(Value)].  (∀p∈m.¬(k (fst(p)) ∈ ℤ)) supposing ¬↑int-decr-map-inDom(k;m)


Proof




Definitions occuring in Statement :  int-decr-map-inDom: int-decr-map-inDom(k;m) int-decr-map-type: int-decr-map-type(Value) l_all: (∀x∈L.P[x]) assert: b uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) not: ¬A int: universe: Type equal: t ∈ T
Lemmas :  int-decr-map-inDom-prop assert_wf isl_wf not_wf null_wf3 subtype_rel_list top_wf l_member_wf squash_wf l_all_wf2 equal-wf-base-T int_subtype_base int-decr-map-find_wf int-decr-map-find-prop2 select_wf sq_stable__le int_seg_wf length_wf int-decr-map-inDom_wf int-decr-map-type_wf
\mforall{}[Value:Type].  \mforall{}[k:\mBbbZ{}].  \mforall{}[m:int-decr-map-type(Value)].
    (\mforall{}p\mmember{}m.\mneg{}(k  =  (fst(p))))  supposing  \mneg{}\muparrow{}int-decr-map-inDom(k;m)



Date html generated: 2015_07_17-AM-08_23_03
Last ObjectModification: 2015_04_02-PM-05_44_09

Home Index