Nuprl Lemma : int-decr-map-find_wf

[Value:Type]. ∀[k:ℤ]. ∀[m:int-decr-map-type(Value)].
  (int-decr-map-find(k;m) ∈ {v:Value| (¬↑null(m)) ∧ (<k, v> ∈ m)}  (↓(∀p∈m.¬(k (fst(p)) ∈ ℤ))))


Proof




Definitions occuring in Statement :  int-decr-map-find: int-decr-map-find(k;m) int-decr-map-type: int-decr-map-type(Value) l_all: (∀x∈L.P[x]) l_member: (x ∈ l) null: null(as) assert: b uall: [x:A]. B[x] pi1: fst(t) not: ¬A squash: T and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  pair: <a, b> product: x:A × B[x] union: left right int: universe: Type equal: t ∈ T
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf l-ordered_wf gt_wf equal-wf-T-base colength_wf_list list_wf list-cases null_nil_lemma l_all_nil l-ordered-nil-true nil_wf true_wf equal-wf-base not_wf l_member_wf squash_wf l_all_wf2 equal-wf-base-T product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel nat_wf decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-commutes le_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base null_cons_lemma find-combine-cons l-ordered-cons cons_wf all_wf member_wf assert_wf null_wf3 subtype_rel_list top_wf int-decr-map-type_wf value-type-has-value int-value-type eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int cons_member lt_int_wf assert_of_lt_int l_all_cons l_all_iff
\mforall{}[Value:Type].  \mforall{}[k:\mBbbZ{}].  \mforall{}[m:int-decr-map-type(Value)].
    (int-decr-map-find(k;m)  \mmember{}  \{v:Value|  (\mneg{}\muparrow{}null(m))  \mwedge{}  (<k,  v>  \mmember{}  m)\}    +  (\mdownarrow{}(\mforall{}p\mmember{}m.\mneg{}(k  =  (fst(p))))))



Date html generated: 2015_07_17-AM-08_22_49
Last ObjectModification: 2015_04_02-PM-05_43_55

Home Index