Nuprl Lemma : int-decr-map-find_wf
∀[Value:Type]. ∀[k:ℤ]. ∀[m:int-decr-map-type(Value)].
  (int-decr-map-find(k;m) ∈ {v:Value| (¬↑null(m)) ∧ (<k, v> ∈ m)}  + (↓(∀p∈m.¬(k = (fst(p)) ∈ ℤ))))
Proof
Definitions occuring in Statement : 
int-decr-map-find: int-decr-map-find(k;m)
, 
int-decr-map-type: int-decr-map-type(Value)
, 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
null: null(as)
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
not: ¬A
, 
squash: ↓T
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
union: left + right
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
l-ordered_wf, 
gt_wf, 
equal-wf-T-base, 
colength_wf_list, 
list_wf, 
list-cases, 
null_nil_lemma, 
l_all_nil, 
l-ordered-nil-true, 
nil_wf, 
true_wf, 
equal-wf-base, 
not_wf, 
l_member_wf, 
squash_wf, 
l_all_wf2, 
equal-wf-base-T, 
product_subtype_list, 
spread_cons_lemma, 
sq_stable__le, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
nat_wf, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-commutes, 
le_wf, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
add-swap, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
null_cons_lemma, 
find-combine-cons, 
l-ordered-cons, 
cons_wf, 
all_wf, 
member_wf, 
assert_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
int-decr-map-type_wf, 
value-type-has-value, 
int-value-type, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
cons_member, 
lt_int_wf, 
assert_of_lt_int, 
l_all_cons, 
l_all_iff
\mforall{}[Value:Type].  \mforall{}[k:\mBbbZ{}].  \mforall{}[m:int-decr-map-type(Value)].
    (int-decr-map-find(k;m)  \mmember{}  \{v:Value|  (\mneg{}\muparrow{}null(m))  \mwedge{}  (<k,  v>  \mmember{}  m)\}    +  (\mdownarrow{}(\mforall{}p\mmember{}m.\mneg{}(k  =  (fst(p))))))
Date html generated:
2015_07_17-AM-08_22_49
Last ObjectModification:
2015_04_02-PM-05_43_55
Home
Index