Nuprl Lemma : l-ordered-nil-true
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (l-ordered(T;x,y.R[x;y];[]) 
⇐⇒ True)
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
l-ordered_wf, 
nil_wf, 
l-ordered-nil, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
natural_numberEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (l-ordered(T;x,y.R[x;y];[])  \mLeftarrow{}{}\mRightarrow{}  True)
Date html generated:
2016_05_15-PM-04_36_20
Last ObjectModification:
2015_12_27-PM-02_45_19
Theory : general
Home
Index