Nuprl Lemma : l-ordered-nil-true

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (l-ordered(T;x,y.R[x;y];[]) ⇐⇒ True)


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) nil: [] uall: [x:A]. B[x] prop: so_apply: x[s1;s2] iff: ⇐⇒ Q true: True function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q true: True member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q
Lemmas referenced :  l-ordered_wf nil_wf l-ordered-nil true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation lambdaFormation natural_numberEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (l-ordered(T;x,y.R[x;y];[])  \mLeftarrow{}{}\mRightarrow{}  True)



Date html generated: 2016_05_15-PM-04_36_20
Last ObjectModification: 2015_12_27-PM-02_45_19

Theory : general


Home Index