Nuprl Lemma : l-ordered-nil
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  l-ordered(T;x,y.R[x;y];[])
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L), 
nil: [], 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
l-ordered: l-ordered(T;x,y.R[x; y];L), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
l_before: x before y ∈ l, 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
false: False, 
prop: ℙ
Lemmas referenced : 
cons_sublist_nil, 
cons_wf, 
nil_wf, 
l_before_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
voidElimination, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    l-ordered(T;x,y.R[x;y];[])
Date html generated:
2016_05_15-PM-04_36_13
Last ObjectModification:
2015_12_27-PM-02_45_27
Theory : general
Home
Index