Nuprl Lemma : l-ordered-nil

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  l-ordered(T;x,y.R[x;y];[])


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) nil: [] uall: [x:A]. B[x] prop: so_apply: x[s1;s2] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  l-ordered: l-ordered(T;x,y.R[x; y];L) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q l_before: before y ∈ l member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q false: False prop:
Lemmas referenced :  cons_sublist_nil cons_wf nil_wf l_before_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution cut lemma_by_obid isectElimination thin because_Cache dependent_functionElimination hypothesisEquality hypothesis productElimination independent_functionElimination voidElimination functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    l-ordered(T;x,y.R[x;y];[])



Date html generated: 2016_05_15-PM-04_36_13
Last ObjectModification: 2015_12_27-PM-02_45_27

Theory : general


Home Index