Nuprl Lemma : l-ordered_wf

[T:Type]. ∀[L:T List]. ∀[R:T ⟶ T ⟶ ℙ].  (l-ordered(T;x,y.R[x;y];L) ∈ ℙ)


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  l-ordered: l-ordered(T;x,y.R[x; y];L) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s1;s2] so_apply: x[s]
Lemmas referenced :  all_wf l_before_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (l-ordered(T;x,y.R[x;y];L)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-04_35_58
Last ObjectModification: 2015_12_27-PM-02_45_43

Theory : general


Home Index