Nuprl Lemma : l-ordered-cons

[T:Type]
  ∀x:T. ∀L:T List.
    ∀[R:T ⟶ T ⟶ ℙ]. (l-ordered(T;x,y.R[x;y];[x L]) ⇐⇒ l-ordered(T;x,y.R[x;y];L) ∧ (∀y:T. ((y ∈ L)  R[x;y])))


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) l_member: (x ∈ l) cons: [a b] list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] or: P ∨ Q cand: c∧ B guard: {T}
Lemmas referenced :  l_member_wf l-ordered_wf cons_wf all_wf list_wf list_ind_cons_lemma list_ind_nil_lemma l-ordered-append nil_wf cons_member l-ordered-single member_singleton and_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionExtensionality productElimination productEquality functionEquality universeEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_functionElimination because_Cache inlFormation hyp_replacement equalitySymmetry dependent_set_memberEquality setElimination rename setEquality

Latex:
\mforall{}[T:Type]
    \mforall{}x:T.  \mforall{}L:T  List.
        \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}]
            (l-ordered(T;x,y.R[x;y];[x  /  L])  \mLeftarrow{}{}\mRightarrow{}  l-ordered(T;x,y.R[x;y];L)  \mwedge{}  (\mforall{}y:T.  ((y  \mmember{}  L)  {}\mRightarrow{}  R[x;y])))



Date html generated: 2016_10_25-AM-10_56_43
Last ObjectModification: 2016_07_12-AM-07_03_49

Theory : general


Home Index