Nuprl Lemma : l-ordered-cons
∀[T:Type]
  ∀x:T. ∀L:T List.
    ∀[R:T ⟶ T ⟶ ℙ]. (l-ordered(T;x,y.R[x;y];[x / L]) 
⇐⇒ l-ordered(T;x,y.R[x;y];L) ∧ (∀y:T. ((y ∈ L) 
⇒ R[x;y])))
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
l_member: (x ∈ l)
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
guard: {T}
Lemmas referenced : 
l_member_wf, 
l-ordered_wf, 
cons_wf, 
all_wf, 
list_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
l-ordered-append, 
nil_wf, 
cons_member, 
l-ordered-single, 
member_singleton, 
and_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
productElimination, 
productEquality, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_functionElimination, 
because_Cache, 
inlFormation, 
hyp_replacement, 
equalitySymmetry, 
dependent_set_memberEquality, 
setElimination, 
rename, 
setEquality
Latex:
\mforall{}[T:Type]
    \mforall{}x:T.  \mforall{}L:T  List.
        \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}]
            (l-ordered(T;x,y.R[x;y];[x  /  L])  \mLeftarrow{}{}\mRightarrow{}  l-ordered(T;x,y.R[x;y];L)  \mwedge{}  (\mforall{}y:T.  ((y  \mmember{}  L)  {}\mRightarrow{}  R[x;y])))
Date html generated:
2016_10_25-AM-10_56_43
Last ObjectModification:
2016_07_12-AM-07_03_49
Theory : general
Home
Index