Nuprl Lemma : l-ordered-single
∀[T:Type]. ∀x:T. ∀[R:T ⟶ T ⟶ ℙ]. l-ordered(T;x,y.R[x;y];[x])
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L), 
cons: [a / b], 
nil: [], 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
l-ordered: l-ordered(T;x,y.R[x; y];L), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
prop: ℙ, 
squash: ↓T, 
true: True, 
not: ¬A, 
false: False, 
uimplies: b supposing a
Lemmas referenced : 
l_before_member, 
cons_wf, 
nil_wf, 
l_before_member2, 
member_singleton, 
l_before_wf, 
no_repeats_singleton, 
squash_wf, 
true_wf, 
list_wf, 
l_before_antisymmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
productElimination, 
equalityElimination, 
functionEquality, 
universeEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
Error :applyLambdaEquality, 
voidElimination, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  l-ordered(T;x,y.R[x;y];[x])
Date html generated:
2016_10_25-AM-10_56_35
Last ObjectModification:
2016_07_12-AM-07_03_33
Theory : general
Home
Index