Nuprl Lemma : l-ordered-single

[T:Type]. ∀x:T. ∀[R:T ⟶ T ⟶ ℙ]. l-ordered(T;x,y.R[x;y];[x])


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) cons: [a b] nil: [] uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  l-ordered: l-ordered(T;x,y.R[x; y];L) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q prop: squash: T true: True not: ¬A false: False uimplies: supposing a
Lemmas referenced :  l_before_member cons_wf nil_wf l_before_member2 member_singleton l_before_wf no_repeats_singleton squash_wf true_wf list_wf l_before_antisymmetry
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination cumulativity hypothesisEquality hypothesis independent_functionElimination productElimination equalityElimination functionEquality universeEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed hyp_replacement Error :applyLambdaEquality,  voidElimination independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  l-ordered(T;x,y.R[x;y];[x])



Date html generated: 2016_10_25-AM-10_56_35
Last ObjectModification: 2016_07_12-AM-07_03_33

Theory : general


Home Index