Nuprl Lemma : l_before_member2
∀[T:Type]. ∀L:T List. ∀a,b:T.  (a before b ∈ L ⇒ (a ∈ L))
Proof
Definitions occuring in Statement : 
l_before: x before y ∈ l, 
l_member: (x ∈ l), 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
l_before: x before y ∈ l, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
cand: A c∧ B, 
top: Top
Lemmas referenced : 
sublist_wf, 
cons_wf, 
nil_wf, 
list_wf, 
member_iff_sublist, 
sublist_transitivity, 
nil-sublist, 
cons_sublist_cons
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :universeIsType, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
inlFormation, 
independent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}a,b:T.    (a  before  b  \mmember{}  L  {}\mRightarrow{}  (a  \mmember{}  L))
Date html generated:
2019_06_20-PM-01_23_25
Last ObjectModification:
2018_09_26-PM-05_27_56
Theory : list_1
Home
Index