Nuprl Lemma : l-ordered-append
∀[T:Type]
  ∀L1,L2:T List.
    ∀[R:T ⟶ T ⟶ ℙ]
      (l-ordered(T;x,y.R[x;y];L1 @ L2)
      
⇐⇒ l-ordered(T;x,y.R[x;y];L1) ∧ l-ordered(T;x,y.R[x;y];L2) ∧ (∀x,y:T.  ((x ∈ L1) 
⇒ (y ∈ L2) 
⇒ R[x;y])))
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
l_member: (x ∈ l)
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
or: P ∨ Q
, 
guard: {T}
Lemmas referenced : 
l_member_wf, 
l-ordered_wf, 
append_wf, 
and_wf, 
all_wf, 
list_wf, 
l_before_append_iff, 
or_wf, 
l_before_wf, 
l_before_append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
productElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
inlFormation, 
inrFormation, 
unionElimination
Latex:
\mforall{}[T:Type]
    \mforall{}L1,L2:T  List.
        \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}]
            (l-ordered(T;x,y.R[x;y];L1  @  L2)
            \mLeftarrow{}{}\mRightarrow{}  l-ordered(T;x,y.R[x;y];L1)
                    \mwedge{}  l-ordered(T;x,y.R[x;y];L2)
                    \mwedge{}  (\mforall{}x,y:T.    ((x  \mmember{}  L1)  {}\mRightarrow{}  (y  \mmember{}  L2)  {}\mRightarrow{}  R[x;y])))
Date html generated:
2016_05_15-PM-04_36_30
Last ObjectModification:
2015_12_27-PM-02_44_49
Theory : general
Home
Index