Nuprl Lemma : l-ordered-append

[T:Type]
  ∀L1,L2:T List.
    ∀[R:T ⟶ T ⟶ ℙ]
      (l-ordered(T;x,y.R[x;y];L1 L2)
      ⇐⇒ l-ordered(T;x,y.R[x;y];L1) ∧ l-ordered(T;x,y.R[x;y];L2) ∧ (∀x,y:T.  ((x ∈ L1)  (y ∈ L2)  R[x;y])))


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) l_member: (x ∈ l) append: as bs list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] l-ordered: l-ordered(T;x,y.R[x; y];L) or: P ∨ Q guard: {T}
Lemmas referenced :  l_member_wf l-ordered_wf append_wf and_wf all_wf list_wf l_before_append_iff or_wf l_before_wf l_before_append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality productElimination functionEquality cumulativity universeEquality dependent_functionElimination independent_functionElimination because_Cache inlFormation inrFormation unionElimination

Latex:
\mforall{}[T:Type]
    \mforall{}L1,L2:T  List.
        \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}]
            (l-ordered(T;x,y.R[x;y];L1  @  L2)
            \mLeftarrow{}{}\mRightarrow{}  l-ordered(T;x,y.R[x;y];L1)
                    \mwedge{}  l-ordered(T;x,y.R[x;y];L2)
                    \mwedge{}  (\mforall{}x,y:T.    ((x  \mmember{}  L1)  {}\mRightarrow{}  (y  \mmember{}  L2)  {}\mRightarrow{}  R[x;y])))



Date html generated: 2016_05_15-PM-04_36_30
Last ObjectModification: 2015_12_27-PM-02_44_49

Theory : general


Home Index