Nuprl Lemma : l_before_append
∀[T:Type]. ∀L1,L2:T List. ∀x,y:T.  ((x ∈ L1) 
⇒ (y ∈ L2) 
⇒ x before y ∈ L1 @ L2)
Proof
Definitions occuring in Statement : 
l_before: x before y ∈ l
, 
l_member: (x ∈ l)
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
l_before: x before y ∈ l
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Lemmas referenced : 
l_member_wf, 
list_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
sublist_append, 
cons_wf, 
nil_wf, 
member_iff_sublist
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :universeIsType, 
universeEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.  \mforall{}x,y:T.    ((x  \mmember{}  L1)  {}\mRightarrow{}  (y  \mmember{}  L2)  {}\mRightarrow{}  x  before  y  \mmember{}  L1  @  L2)
Date html generated:
2019_06_20-PM-01_23_20
Last ObjectModification:
2018_09_26-PM-05_27_53
Theory : list_1
Home
Index