Nuprl Lemma : l_before_append

[T:Type]. ∀L1,L2:T List. ∀x,y:T.  ((x ∈ L1)  (y ∈ L2)  before y ∈ L1 L2)


Proof




Definitions occuring in Statement :  l_before: before y ∈ l l_member: (x ∈ l) append: as bs list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  l_before: before y ∈ l uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] iff: ⇐⇒ Q and: P ∧ Q
Lemmas referenced :  l_member_wf list_wf list_ind_cons_lemma list_ind_nil_lemma sublist_append cons_wf nil_wf member_iff_sublist
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :universeIsType,  universeEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality because_Cache independent_functionElimination productElimination

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.  \mforall{}x,y:T.    ((x  \mmember{}  L1)  {}\mRightarrow{}  (y  \mmember{}  L2)  {}\mRightarrow{}  x  before  y  \mmember{}  L1  @  L2)



Date html generated: 2019_06_20-PM-01_23_20
Last ObjectModification: 2018_09_26-PM-05_27_53

Theory : list_1


Home Index