Nuprl Lemma : hdf-bind-compose1-left
∀[A,B,C,U:Type]. ∀[f:B ─→ C]. ∀[X:hdataflow(A;B)]. ∀[Y:C ─→ hdataflow(A;U)].
  (f o X >>= Y = X >>= Y o f ∈ hdataflow(A;U)) supposing (valueall-type(C) and valueall-type(U))
Proof
Definitions occuring in Statement : 
hdf-bind: X >>= Y
, 
hdf-compose1: f o X
, 
hdataflow: hdataflow(A;B)
, 
compose: f o g
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
hdf-bind-as-gen, 
valueall-type_wf, 
hdataflow_wf, 
empty-bag_wf, 
hdf-bind-gen_wf, 
compose_wf, 
hdf-bind-gen-compose1-left, 
iff_weakening_equal
\mforall{}[A,B,C,U:Type].  \mforall{}[f:B  {}\mrightarrow{}  C].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:C  {}\mrightarrow{}  hdataflow(A;U)].
    (f  o  X  >>=  Y  =  X  >>=  Y  o  f)  supposing  (valueall-type(C)  and  valueall-type(U))
Date html generated:
2015_07_17-AM-08_07_16
Last ObjectModification:
2015_02_03-PM-09_47_42
Home
Index