Nuprl Lemma : hdf-bind-compose1-left

[A,B,C,U:Type]. ∀[f:B ─→ C]. ∀[X:hdataflow(A;B)]. ∀[Y:C ─→ hdataflow(A;U)].
  (f X >>X >>f ∈ hdataflow(A;U)) supposing (valueall-type(C) and valueall-type(U))


Proof




Definitions occuring in Statement :  hdf-bind: X >>Y hdf-compose1: X hdataflow: hdataflow(A;B) compose: g valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  hdf-bind-as-gen valueall-type_wf hdataflow_wf empty-bag_wf hdf-bind-gen_wf compose_wf hdf-bind-gen-compose1-left iff_weakening_equal
\mforall{}[A,B,C,U:Type].  \mforall{}[f:B  {}\mrightarrow{}  C].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:C  {}\mrightarrow{}  hdataflow(A;U)].
    (f  o  X  >>=  Y  =  X  >>=  Y  o  f)  supposing  (valueall-type(C)  and  valueall-type(U))



Date html generated: 2015_07_17-AM-08_07_16
Last ObjectModification: 2015_02_03-PM-09_47_42

Home Index