Nuprl Lemma : hdf-bind-gen-compose1-left
∀[A,B,C,U:Type]. ∀[f:B ─→ C]. ∀[X:hdataflow(A;B)]. ∀[Y:C ─→ hdataflow(A;U)]. ∀[hdfs:bag(hdataflow(A;U))].
  (f o X (hdfs) >>= Y = X (hdfs) >>= Y o f ∈ hdataflow(A;U)) supposing (valueall-type(C) and valueall-type(U))
Proof
Definitions occuring in Statement : 
hdf-bind-gen: X (hdfs) >>= Y
, 
hdf-compose1: f o X
, 
hdataflow: hdataflow(A;B)
, 
compose: f o g
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
bag: bag(T)
Lemmas : 
hdataflow-equal, 
hdf-bind-gen_wf, 
hdf-compose1_wf, 
compose_wf, 
list_wf, 
valueall-type_wf, 
bag_wf, 
hdataflow_wf, 
list_induction, 
all_wf, 
equal_wf, 
bool_wf, 
hdf-halted_wf, 
iterate-hdataflow_wf, 
iter_hdf_nil_lemma, 
iter_hdf_cons_lemma, 
eqtt_to_assert, 
hdf_halted_halt_red_lemma, 
bag-null_wf, 
assert-bag-null, 
btrue_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
hdf_halted_run_red_lemma, 
bfalse_wf, 
hdf-compose1-ap, 
bag-map-map, 
hdf-bind-gen-ap, 
hdf-out_wf, 
hdf_out_halt_red_lemma, 
hdf_ap_halt_lemma, 
bag_map_empty_lemma, 
hdataflow-ext, 
unit_wf2, 
hdf_halted_inl_red_lemma, 
false_wf, 
bag-map_wf, 
hdf-ap_wf, 
bag-append_wf, 
empty-bag_wf, 
true_wf, 
valueall-type-has-valueall, 
bag-valueall-type, 
product-valueall-type, 
hdataflow-valueall-type, 
bag-filter-wf3, 
bnot_wf, 
bag-combine_wf, 
hdf-ap-inl, 
hdf-ap-run, 
evalall-reduce, 
not_wf, 
hdf-out-run, 
bag-filter_wf, 
subtype_rel_bag, 
assert_wf
\mforall{}[A,B,C,U:Type].  \mforall{}[f:B  {}\mrightarrow{}  C].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:C  {}\mrightarrow{}  hdataflow(A;U)].
\mforall{}[hdfs:bag(hdataflow(A;U))].
    (f  o  X  (hdfs)  >>=  Y  =  X  (hdfs)  >>=  Y  o  f)  supposing  (valueall-type(C)  and  valueall-type(U))
Date html generated:
2015_07_17-AM-08_07_14
Last ObjectModification:
2015_01_27-PM-00_07_28
Home
Index