Nuprl Lemma : hdf-bind-gen-compose1-left

[A,B,C,U:Type]. ∀[f:B ─→ C]. ∀[X:hdataflow(A;B)]. ∀[Y:C ─→ hdataflow(A;U)]. ∀[hdfs:bag(hdataflow(A;U))].
  (f (hdfs) >>(hdfs) >>f ∈ hdataflow(A;U)) supposing (valueall-type(C) and valueall-type(U))


Proof




Definitions occuring in Statement :  hdf-bind-gen: (hdfs) >>Y hdf-compose1: X hdataflow: hdataflow(A;B) compose: g valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] function: x:A ─→ B[x] universe: Type equal: t ∈ T bag: bag(T)
Lemmas :  hdataflow-equal hdf-bind-gen_wf hdf-compose1_wf compose_wf list_wf valueall-type_wf bag_wf hdataflow_wf list_induction all_wf equal_wf bool_wf hdf-halted_wf iterate-hdataflow_wf iter_hdf_nil_lemma iter_hdf_cons_lemma eqtt_to_assert hdf_halted_halt_red_lemma bag-null_wf assert-bag-null btrue_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base hdf_halted_run_red_lemma bfalse_wf hdf-compose1-ap bag-map-map hdf-bind-gen-ap hdf-out_wf hdf_out_halt_red_lemma hdf_ap_halt_lemma bag_map_empty_lemma hdataflow-ext unit_wf2 hdf_halted_inl_red_lemma false_wf bag-map_wf hdf-ap_wf bag-append_wf empty-bag_wf true_wf valueall-type-has-valueall bag-valueall-type product-valueall-type hdataflow-valueall-type bag-filter-wf3 bnot_wf bag-combine_wf hdf-ap-inl hdf-ap-run evalall-reduce not_wf hdf-out-run bag-filter_wf subtype_rel_bag assert_wf
\mforall{}[A,B,C,U:Type].  \mforall{}[f:B  {}\mrightarrow{}  C].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:C  {}\mrightarrow{}  hdataflow(A;U)].
\mforall{}[hdfs:bag(hdataflow(A;U))].
    (f  o  X  (hdfs)  >>=  Y  =  X  (hdfs)  >>=  Y  o  f)  supposing  (valueall-type(C)  and  valueall-type(U))



Date html generated: 2015_07_17-AM-08_07_14
Last ObjectModification: 2015_01_27-PM-00_07_28

Home Index