Nuprl Lemma : hdf-compose1-ap
∀[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[f:B ─→ C]. ∀[a:A].
  f o X(a) ~ <f o (fst(X(a))), bag-map(f;snd(X(a)))> supposing valueall-type(C)
Proof
Definitions occuring in Statement : 
hdf-compose1: f o X
, 
hdf-ap: X(a)
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
function: x:A ─→ B[x]
, 
pair: <a, b>
, 
universe: Type
, 
sqequal: s ~ t
, 
bag-map: bag-map(f;bs)
Lemmas : 
hdf-halted_wf, 
bool_wf, 
eqtt_to_assert, 
hdf_ap_halt_lemma, 
hdataflow-ext, 
bag_wf, 
unit_wf2, 
hdf_halted_inl_red_lemma, 
false_wf, 
hdf_halted_halt_red_lemma, 
bag_map_empty_lemma, 
true_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
hdf-ap-inl, 
hdf-ap-run, 
valueall-type-has-valueall, 
bag-valueall-type, 
bag-map_wf, 
evalall-reduce, 
not_wf, 
valueall-type_wf, 
hdataflow_wf
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[f:B  {}\mrightarrow{}  C].  \mforall{}[a:A].
    f  o  X(a)  \msim{}  <f  o  (fst(X(a))),  bag-map(f;snd(X(a)))>  supposing  valueall-type(C)
Date html generated:
2015_07_17-AM-08_05_26
Last ObjectModification:
2015_01_27-PM-00_16_35
Home
Index