Nuprl Lemma : rv-iid_wf
∀[p:FinProbSpace]. ∀[f:ℕ ─→ ℕ]. ∀[X:n:ℕ ─→ RandomVariable(p;f[n])].  (rv-iid(p;n.f[n];n.X[n]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
rv-iid: rv-iid(p;n.f[n];i.X[i])
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
Lemmas : 
rv-identically-distributed_wf, 
nat_wf, 
all_wf, 
int_seg_wf, 
less_than_wf, 
int_seg_subtype-nat, 
false_wf, 
rv-disjoint_wf, 
subtype_rel-random-variable, 
le_weakening2, 
random-variable_wf, 
finite-prob-space_wf
\mforall{}[p:FinProbSpace].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[X:n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n])].    (rv-iid(p;n.f[n];n.X[n])  \mmember{}  \mBbbP{})
Date html generated:
2015_07_17-AM-08_02_02
Last ObjectModification:
2015_01_27-AM-11_21_53
Home
Index