Nuprl Lemma : closure-set_wf

[B:Set{i:l}]. ∀[Y:Set{i:l} ⟶ Set{i:l}]. ∀[x:Set{i:l}].  (closure-set(B;Y;x) ∈ Set{i:l})


Proof




Definitions occuring in Statement :  closure-set: closure-set(B;Y;x) Set: Set{i:l} uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T closure-set: closure-set(B;Y;x) so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  setunionfun_wf setimages_wf Set_wf setmem_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality setElimination rename hypothesis applyEquality setEquality cumulativity because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality

Latex:
\mforall{}[B:Set\{i:l\}].  \mforall{}[Y:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}].  \mforall{}[x:Set\{i:l\}].    (closure-set(B;Y;x)  \mmember{}  Set\{i:l\})



Date html generated: 2018_07_29-AM-10_10_02
Last ObjectModification: 2018_05_30-PM-05_28_00

Theory : constructive!set!theory


Home Index