Nuprl Lemma : closure-set_wf
∀[B:Set{i:l}]. ∀[Y:Set{i:l} ⟶ Set{i:l}]. ∀[x:Set{i:l}].  (closure-set(B;Y;x) ∈ Set{i:l})
Proof
Definitions occuring in Statement : 
closure-set: closure-set(B;Y;x)
, 
Set: Set{i:l}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
closure-set: closure-set(B;Y;x)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
setunionfun_wf, 
setimages_wf, 
Set_wf, 
setmem_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
setElimination, 
rename, 
hypothesis, 
applyEquality, 
setEquality, 
cumulativity, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality
Latex:
\mforall{}[B:Set\{i:l\}].  \mforall{}[Y:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}].  \mforall{}[x:Set\{i:l\}].    (closure-set(B;Y;x)  \mmember{}  Set\{i:l\})
Date html generated:
2018_07_29-AM-10_10_02
Last ObjectModification:
2018_05_30-PM-05_28_00
Theory : constructive!set!theory
Home
Index