Nuprl Lemma : fix_wf_coSet_system_weak
∀[I:𝕌']. ∀[G:⋂C:𝕌'. ((I ⟶ C) ⟶ I ⟶ (T:Type × (T ⟶ C)))].  (fix(G) ∈ I ⟶ coSet{i:l})
Proof
Definitions occuring in Statement : 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fix: fix(F)
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
Lemmas referenced : 
fix_wf_coSet_system, 
set_wf, 
subtype_rel_wf, 
coSet_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
productEquality, 
functionEquality, 
cumulativity, 
applyEquality, 
because_Cache, 
isectEquality
Latex:
\mforall{}[I:\mBbbU{}'].  \mforall{}[G:\mcap{}C:\mBbbU{}'.  ((I  {}\mrightarrow{}  C)  {}\mrightarrow{}  I  {}\mrightarrow{}  (T:Type  \mtimes{}  (T  {}\mrightarrow{}  C)))].    (fix(G)  \mmember{}  I  {}\mrightarrow{}  coSet\{i:l\})
Date html generated:
2019_10_31-AM-06_33_00
Last ObjectModification:
2018_08_08-AM-08_17_01
Theory : constructive!set!theory
Home
Index