Nuprl Lemma : funclosed-set_wf
∀[f:Set{i:l} ⟶ Set{i:l}]. ∀[s:Set{i:l}].  (f-closed(s) ∈ ℙ')
Proof
Definitions occuring in Statement : 
funclosed-set: f-closed(s)
, 
Set: Set{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
funclosed-set: f-closed(s)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
setsubset_wf, 
Set_wf, 
all_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
applyEquality, 
hypothesisEquality, 
functionEquality, 
cumulativity, 
lambdaEquality, 
hypothesis, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[f:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}].  \mforall{}[s:Set\{i:l\}].    (f-closed(s)  \mmember{}  \mBbbP{}')
Date html generated:
2018_05_29-PM-01_55_01
Last ObjectModification:
2018_05_25-AM-08_48_03
Theory : constructive!set!theory
Home
Index