Nuprl Lemma : inductively-defined-unique
∀R:Set{i:l} ⟶ Set{i:l} ⟶ ℙ'. ∀s1,s2:Set{i:l}.
  (inductively-defined{i:l}(x,a.R[x;a];s1) 
⇒ inductively-defined{i:l}(x,a.R[x;a];s2) 
⇒ seteq(s1;s2))
Proof
Definitions occuring in Statement : 
inductively-defined: inductively-defined{i:l}(x,a.R[x; a];s)
, 
seteq: seteq(s1;s2)
, 
Set: Set{i:l}
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
inductively-defined: inductively-defined{i:l}(x,a.R[x; a];s)
, 
guard: {T}
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
Set_wf, 
inductively-defined_wf, 
seteq-iff-setsubset
Rules used in proof : 
universeEquality, 
cumulativity, 
functionEquality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
independent_pairFormation, 
independent_functionElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}R:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}'.  \mforall{}s1,s2:Set\{i:l\}.
    (inductively-defined\{i:l\}(x,a.R[x;a];s1)
    {}\mRightarrow{}  inductively-defined\{i:l\}(x,a.R[x;a];s2)
    {}\mRightarrow{}  seteq(s1;s2))
Date html generated:
2018_05_29-PM-01_54_25
Last ObjectModification:
2018_05_25-PM-05_22_13
Theory : constructive!set!theory
Home
Index