Nuprl Lemma : inductively-defined_wf
∀[R:Set{i:l} ⟶ Set{i:l} ⟶ ℙ']. ∀[s:Set{i:l}].  (inductively-defined{i:l}(x,a.R[x;a];s) ∈ ℙ')
Proof
Definitions occuring in Statement : 
inductively-defined: inductively-defined{i:l}(x,a.R[x; a];s)
, 
Set: Set{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
and: P ∧ Q
, 
prop: ℙ
, 
inductively-defined: inductively-defined{i:l}(x,a.R[x; a];s)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
setsubset_wf, 
all_wf, 
Set_wf, 
relclosed-set_wf
Rules used in proof : 
universeEquality, 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
cumulativity, 
functionEquality, 
instantiate, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
productEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[R:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}'].  \mforall{}[s:Set\{i:l\}].    (inductively-defined\{i:l\}(x,a.R[x;a];s)  \mmember{}  \mBbbP{}')
Date html generated:
2018_05_29-PM-01_54_22
Last ObjectModification:
2018_05_25-PM-05_21_51
Theory : constructive!set!theory
Home
Index