Nuprl Lemma : inductively-defined_wf

[R:Set{i:l} ⟶ Set{i:l} ⟶ ℙ']. ∀[s:Set{i:l}].  (inductively-defined{i:l}(x,a.R[x;a];s) ∈ ℙ')


Proof




Definitions occuring in Statement :  inductively-defined: inductively-defined{i:l}(x,a.R[x; a];s) Set: Set{i:l} uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] so_apply: x[s] implies:  Q so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] and: P ∧ Q prop: inductively-defined: inductively-defined{i:l}(x,a.R[x; a];s) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  setsubset_wf all_wf Set_wf relclosed-set_wf
Rules used in proof :  universeEquality because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality cumulativity functionEquality instantiate hypothesis hypothesisEquality applyEquality lambdaEquality thin isectElimination sqequalHypSubstitution extract_by_obid productEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[R:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}  {}\mrightarrow{}  \mBbbP{}'].  \mforall{}[s:Set\{i:l\}].    (inductively-defined\{i:l\}(x,a.R[x;a];s)  \mmember{}  \mBbbP{}')



Date html generated: 2018_05_29-PM-01_54_22
Last ObjectModification: 2018_05_25-PM-05_21_51

Theory : constructive!set!theory


Home Index