Nuprl Lemma : itersetfun_functionality
∀G:Set{i:l} ⟶ Set{i:l}
  ((∀a,b:Set{i:l}.  ((a ⊆ b) 
⇒ (G[a] ⊆ G[b])))
  
⇒ (∀b,a:Set{i:l}.  (seteq(a;b) 
⇒ seteq(itersetfun(x.G[x];a);itersetfun(x.G[x];b)))))
Proof
Definitions occuring in Statement : 
itersetfun: itersetfun(s.G[s];a)
, 
setsubset: (a ⊆ b)
, 
seteq: seteq(s1;s2)
, 
Set: Set{i:l}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
prop: ℙ
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
setsubset_wf, 
all_wf, 
seteq_wf, 
itersetfun_functionality_subset, 
Set_wf, 
itersetfun_wf, 
seteq-iff-setsubset
Rules used in proof : 
functionEquality, 
cumulativity, 
instantiate, 
because_Cache, 
independent_pairFormation, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
independent_functionElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}G:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}
    ((\mforall{}a,b:Set\{i:l\}.    ((a  \msubseteq{}  b)  {}\mRightarrow{}  (G[a]  \msubseteq{}  G[b])))
    {}\mRightarrow{}  (\mforall{}b,a:Set\{i:l\}.    (seteq(a;b)  {}\mRightarrow{}  seteq(itersetfun(x.G[x];a);itersetfun(x.G[x];b)))))
Date html generated:
2018_05_23-AM-08_10_11
Last ObjectModification:
2018_05_22-PM-11_28_45
Theory : constructive!set!theory
Home
Index