Nuprl Lemma : orderedpair-snds_wf

[pr:coSet{i:l}]. (snds(pr) ∈ coSet{i:l})


Proof




Definitions occuring in Statement :  orderedpair-snds: snds(pr) coSet: coSet{i:l} uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] prop: so_lambda: λ2x.t[x] orderedpair-snds: snds(pr) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  setmem_wf coSet_wf orderedpair-fst_wf orderedpairset_wf seteq_wf unionset_wf sub-set_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality cumulativity setEquality rename setElimination lambdaEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[pr:coSet\{i:l\}].  (snds(pr)  \mmember{}  coSet\{i:l\})



Date html generated: 2018_07_29-AM-10_02_12
Last ObjectModification: 2018_07_18-PM-03_05_32

Theory : constructive!set!theory


Home Index