Nuprl Lemma : orderedpair-snds_wf
∀[pr:coSet{i:l}]. (snds(pr) ∈ coSet{i:l})
Proof
Definitions occuring in Statement : 
orderedpair-snds: snds(pr)
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
orderedpair-snds: snds(pr)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
setmem_wf, 
coSet_wf, 
orderedpair-fst_wf, 
orderedpairset_wf, 
seteq_wf, 
unionset_wf, 
sub-set_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
cumulativity, 
setEquality, 
rename, 
setElimination, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[pr:coSet\{i:l\}].  (snds(pr)  \mmember{}  coSet\{i:l\})
Date html generated:
2018_07_29-AM-10_02_12
Last ObjectModification:
2018_07_18-PM-03_05_32
Theory : constructive!set!theory
Home
Index