Nuprl Lemma : productset_wf2
∀[a,b:Set{i:l}].  (a x b ∈ Set{i:l})
Proof
Definitions occuring in Statement : 
productset: a x b
, 
Set: Set{i:l}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
mkset: {f[t] | t ∈ T}
, 
productset: a x b
, 
Wsup: Wsup(a;b)
, 
mk-set: f"(T)
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
Set_wf, 
orderedpairset_wf2, 
mkset_wf, 
set-subtype, 
subtype-set
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
spreadEquality, 
lambdaEquality, 
productEquality, 
isectElimination, 
rename, 
thin, 
productElimination, 
sqequalRule, 
sqequalHypSubstitution, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
hypothesis_subsumption, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a,b:Set\{i:l\}].    (a  x  b  \mmember{}  Set\{i:l\})
Date html generated:
2018_07_29-AM-10_03_59
Last ObjectModification:
2018_07_18-PM-11_41_16
Theory : constructive!set!theory
Home
Index