Nuprl Lemma : setTC-contains
∀a:Set{i:l}. (a ⊆ setTC(a))
Proof
Definitions occuring in Statement : 
setsubset: (a ⊆ b)
, 
setTC: setTC(a)
, 
Set: Set{i:l}
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
setTC: Error :setTC, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
Lemmas referenced : 
setmem-set-add, 
setunionfun_wf, 
Set_wf, 
setmem_wf, 
setsubset-iff, 
all_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
hypothesis, 
setEquality, 
cumulativity, 
productElimination, 
independent_functionElimination, 
inlFormation, 
because_Cache, 
addLevel, 
allFunctionality, 
instantiate, 
functionEquality
Latex:
\mforall{}a:Set\{i:l\}.  (a  \msubseteq{}  setTC(a))
Date html generated:
2018_07_29-AM-10_03_35
Last ObjectModification:
2018_05_30-PM-00_30_40
Theory : constructive!set!theory
Home
Index