Nuprl Lemma : setTC-contains

a:Set{i:l}. (a ⊆ setTC(a))


Proof




Definitions occuring in Statement :  setsubset: (a ⊆ b) setTC: setTC(a) Set: Set{i:l} all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q setTC: Error :setTC,  member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] prop: so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q or: P ∨ Q
Lemmas referenced :  setmem-set-add setunionfun_wf Set_wf setmem_wf setsubset-iff all_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination sqequalRule lambdaEquality setElimination rename hypothesis setEquality cumulativity productElimination independent_functionElimination inlFormation because_Cache addLevel allFunctionality instantiate functionEquality

Latex:
\mforall{}a:Set\{i:l\}.  (a  \msubseteq{}  setTC(a))



Date html generated: 2018_07_29-AM-10_03_35
Last ObjectModification: 2018_05_30-PM-00_30_40

Theory : constructive!set!theory


Home Index