Nuprl Lemma : constant-A-open-box

Gamma,X,I,alpha:Top.  ∀[J,x,i:Top].  (A-open-box(Gamma;(X);I;alpha;J;x;i) open_box(X;I;J;x;i))


Proof




Definitions occuring in Statement :  A-open-box: A-open-box(X;A;I;alpha;J;x;i) open_box: open_box(X;I;J;x;i) constant-cubical-type: (X) uall: [x:A]. B[x] top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T open_box: open_box(X;I;J;x;i) A-open-box: A-open-box(X;A;I;alpha;J;x;i) I-face: I-face(X;I) constant-cubical-type: (X) A-face: A-face(X;A;I;alpha) cubical-type-at: A(a) pi1: fst(t) adjacent-compatible: adjacent-compatible(X;I;L) A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L) face-compatible: face-compatible(X;I;f1;f2) A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2) cubical-type-ap-morph: (u f) pi2: snd(t) face-name: face-name(f) A-face-name: A-face-name(f)
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalRule hypothesis sqequalAxiom lemma_by_obid sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}Gamma,X,I,alpha:Top.    \mforall{}[J,x,i:Top].    (A-open-box(Gamma;(X);I;alpha;J;x;i)  \msim{}  open\_box(X;I;J;x;i))



Date html generated: 2016_06_16-PM-05_56_31
Last ObjectModification: 2015_12_28-PM-04_27_41

Theory : cubical!sets


Home Index