Nuprl Lemma : csm-comp_wf

[A,B,C:CubicalSet]. ∀[F:A ⟶ B]. ∀[G:B ⟶ C].  (G F ∈ A ⟶ C)


Proof




Definitions occuring in Statement :  csm-comp: F cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T csm-comp: F cube-set-map: A ⟶ B ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  cubical-set-is-functor trans-comp_wf name-cat_wf type-cat_wf cube-set-map_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution productElimination thin instantiate isectElimination hypothesis hypothesisEquality applyEquality sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[A,B,C:CubicalSet].  \mforall{}[F:A  {}\mrightarrow{}  B].  \mforall{}[G:B  {}\mrightarrow{}  C].    (G  o  F  \mmember{}  A  {}\mrightarrow{}  C)



Date html generated: 2016_06_16-PM-05_35_53
Last ObjectModification: 2015_12_28-PM-04_37_54

Theory : cubical!sets


Home Index