Nuprl Lemma : csm-comp_wf
∀[A,B,C:CubicalSet]. ∀[F:A ⟶ B]. ∀[G:B ⟶ C].  (G o F ∈ A ⟶ C)
Proof
Definitions occuring in Statement : 
csm-comp: G o F
, 
cube-set-map: A ⟶ B
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
csm-comp: G o F
, 
cube-set-map: A ⟶ B
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
cubical-set-is-functor, 
trans-comp_wf, 
name-cat_wf, 
type-cat_wf, 
cube-set-map_wf, 
cubical-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
productElimination, 
thin, 
instantiate, 
isectElimination, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A,B,C:CubicalSet].  \mforall{}[F:A  {}\mrightarrow{}  B].  \mforall{}[G:B  {}\mrightarrow{}  C].    (G  o  F  \mmember{}  A  {}\mrightarrow{}  C)
Date html generated:
2016_06_16-PM-05_35_53
Last ObjectModification:
2015_12_28-PM-04_37_54
Theory : cubical!sets
Home
Index