Nuprl Lemma : csm-type-ap_wf
∀[Gamma,Delta:CubicalSet]. ∀[s:Delta ⟶ Gamma]. ∀[A:{Gamma ⊢ _}].  Delta ⊢ csm-type-ap(A;s)
Proof
Definitions occuring in Statement : 
csm-type-ap: csm-type-ap(A;s)
, 
cubical-type: {X ⊢ _}
, 
cube-set-map: A ⟶ B
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
csm-type-ap: csm-type-ap(A;s)
Lemmas referenced : 
cubical-set_wf, 
cube-set-map_wf, 
cubical-type_wf, 
csm-ap-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[Gamma,Delta:CubicalSet].  \mforall{}[s:Delta  {}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    Delta  \mvdash{}  csm-type-ap(A;s)
Date html generated:
2016_06_16-PM-05_39_29
Last ObjectModification:
2016_03_13-PM-03_20_15
Theory : cubical!sets
Home
Index