Nuprl Lemma : csm-type-ap_wf

[Gamma,Delta:CubicalSet]. ∀[s:Delta ⟶ Gamma]. ∀[A:{Gamma ⊢ _}].  Delta ⊢ csm-type-ap(A;s)


Proof




Definitions occuring in Statement :  csm-type-ap: csm-type-ap(A;s) cubical-type: {X ⊢ _} cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T csm-type-ap: csm-type-ap(A;s)
Lemmas referenced :  cubical-set_wf cube-set-map_wf cubical-type_wf csm-ap-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[Gamma,Delta:CubicalSet].  \mforall{}[s:Delta  {}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    Delta  \mvdash{}  csm-type-ap(A;s)



Date html generated: 2016_06_16-PM-05_39_29
Last ObjectModification: 2016_03_13-PM-03_20_15

Theory : cubical!sets


Home Index