Step
*
1
1
of Lemma
cubical-interval-filler-fills
1. I : Cname List
2. J : nameset(I) List
3. x : nameset(I)
4. i : ℕ2
5. bx : open_box(cubical-interval();I;J;x;i)
6. i@0 : ℕ||bx||
⊢ is-face(cubical-interval();I;cubical-interval-filler() I J x i bx;bx[i@0])
BY
{ (RenameVar `j' (-1)
THEN RepUR ``cubical-interval-filler`` 0
THEN ((BoolCase ⌜null(J)⌝⋅ THENA Auto)
THENL [(DVar `J' THEN Try ((ImpossibleEq Auto (-1) THEN Auto)) THEN Thin (-1))
; TACTIC:((Assert ⌜nameset(J) ⊆r nameset(I)⌝⋅ THENA (DVar `bx' THEN Auto))
THEN (GenConcl ⌜hd(J) = y ∈ nameset(J)⌝⋅ THENA (Unfold `nameset` 0 THEN Auto))
)]
)) }
1
1. I : Cname List
2. x : nameset(I)
3. i : ℕ2
4. bx : open_box(cubical-interval();I;[];x;i)
5. j : ℕ||bx||
⊢ is-face(cubical-interval();I;cube(hd(bx));bx[j])
2
1. I : Cname List
2. J : nameset(I) List
3. ¬(J = [] ∈ (nameset(I) List))
4. x : nameset(I)
5. i : ℕ2
6. bx : open_box(cubical-interval();I;J;x;i)
7. j : ℕ||bx||
8. nameset(J) ⊆r nameset(I)
9. y : nameset(J)
10. hd(J) = y ∈ nameset(J)
⊢ is-face(cubical-interval();I;λL.cube(get_face(y;L y;bx))(L);bx[j])
Latex:
Latex:
1. I : Cname List
2. J : nameset(I) List
3. x : nameset(I)
4. i : \mBbbN{}2
5. bx : open\_box(cubical-interval();I;J;x;i)
6. i@0 : \mBbbN{}||bx||
\mvdash{} is-face(cubical-interval();I;cubical-interval-filler() I J x i bx;bx[i@0])
By
Latex:
(RenameVar `j' (-1)
THEN RepUR ``cubical-interval-filler`` 0
THEN ((BoolCase \mkleeneopen{}null(J)\mkleeneclose{}\mcdot{} THENA Auto)
THENL [(DVar `J' THEN Try ((ImpossibleEq Auto (-1) THEN Auto)) THEN Thin (-1))
; TACTIC:((Assert \mkleeneopen{}nameset(J) \msubseteq{}r nameset(I)\mkleeneclose{}\mcdot{} THENA (DVar `bx' THEN Auto))
THEN (GenConcl \mkleeneopen{}hd(J) = y\mkleeneclose{}\mcdot{} THENA (Unfold `nameset` 0 THEN Auto))
)]
))
Home
Index