Nuprl Lemma : cubical-interval-filler-fills

Kan-filler(cubical-interval();cubical-interval-filler())


Proof




Definitions occuring in Statement :  cubical-interval-filler: cubical-interval-filler() Kan-filler: Kan-filler(X;filler) cubical-interval: cubical-interval()
Definitions unfolded in proof :  Kan-filler: Kan-filler(X;filler) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a nameset: nameset(L) fills-open_box: fills-open_box(X;I;bx;cube) fills-faces: fills-faces(X;I;bx;L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B open_box: open_box(X;I;J;x;i) cubical-interval-filler: cubical-interval-filler() top: Top implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  or: P ∨ Q cons: [a b] so_lambda: so_lambda3 so_apply: x[s1;s2;s3] sq_type: SQType(T) guard: {T} true: True false: False bfalse: ff exists: x:A. B[x] bnot: ¬bb assert: b not: ¬A rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B prop: nat: decidable: Dec(P) subtract: m less_than': less_than'(a;b) listp: List+ ext-eq: A ≡ B length: ||as|| list_ind: list_ind nil: [] is-face: is-face(X;I;bx;f) select: L[n] satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  less_than: a < b squash: T coordinate_name: Cname int_upper: {i...} cubical-interval: cubical-interval() I-cube: X(I) cube-set-restriction: f(s) pi2: snd(t) face-map: (x:=i) name-comp: (f g) compose: g uext: uext(g) name-morph: name-morph(I;J) sq_stable: SqStable(P) face-name: face-name(f) so_lambda: λ2x.t[x] so_apply: x[s] pi1: fst(t) face-direction: direction(f) face-dimension: dimension(f) nequal: a ≠ b ∈  isname: isname(z) l_member: (x ∈ l) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cubical-interval-ap: u(L) istype: istype(T) respects-equality: respects-equality(S;T) l_subset: l_subset(T;as;bs)
Lemmas referenced :  open_box_wf cubical-interval_wf subtype_rel_list nameset_wf coordinate_name_wf int_seg_wf list_wf length_wf I-face_wf null_wf3 top_wf istype-void eqtt_to_assert assert_of_null list-cases product_subtype_list list_ind_nil_lemma list_ind_cons_lemma subtype_base_sq int_subtype_base eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal-wf-T-base nil_wf nameset_subtype hd_wf l_member_wf list-subtype listp_properties length_of_nil_lemma length_of_cons_lemma length_wf_nat decidable__lt istype-false not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel istype-less_than open_box-nil reduce_hd_cons_lemma decidable__equal_int int_seg_properties int_seg_subtype_special int_seg_cases full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf non_neg_length intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma face-cube_wf face-dimension_wf face-direction_wf I-cube_wf list-diff_wf cname_deq_wf cons_wf ob_pair_lemma name-morph-ext name-comp_wf name-morph_wf face-map_wf2 name-morph_subtype list-diff-subset eq_int_wf assert_of_eq_int neg_assert_of_eq_int member-list-diff member_singleton isname-nameset select_wf sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le intformnot_wf int_formula_prop_not_lemma extd-nameset-nil get_face_wf pi2_wf pi1_wf_top set_subtype_base le_wf nameset_subtype_base lelt_wf iff_imp_equal_bool le_int_wf bfalse_wf iff_functionality_wrt_iff false_wf assert_of_le_int iff_weakening_equal istype-le pairwise-implies not_wf equal_wf face-name_wf nat_properties select_member cubical-interval-ap_wf squash_wf true_wf adjacent-compatible-iff subtype_rel_wf istype-universe list-diff2-sym eq_int_eq_false subtype-respects-equality subtype_rel_self istype-assert face-map-comp-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality applyEquality independent_isectElimination lambdaEquality_alt setElimination rename inhabitedIsType sqequalRule natural_numberEquality productElimination isect_memberEquality_alt voidElimination unionElimination equalityElimination equalityTransitivity equalitySymmetry dependent_functionElimination promote_hyp hypothesis_subsumption applyLambdaEquality instantiate cumulativity intEquality independent_functionElimination dependent_pairFormation_alt equalityIstype because_Cache baseClosed setEquality independent_pairFormation addEquality minusEquality dependent_set_memberEquality_alt approximateComputation int_eqEquality Error :memTop,  imageElimination functionExtensionality imageMemberEquality independent_pairEquality hyp_replacement sqequalBase productEquality productIsType universeEquality

Latex:
Kan-filler(cubical-interval();cubical-interval-filler())



Date html generated: 2020_05_21-AM-10_52_36
Last ObjectModification: 2019_12_08-PM-07_05_51

Theory : cubical!sets


Home Index