Nuprl Lemma : cubical-interval-filler-fills
Kan-filler(cubical-interval();cubical-interval-filler())
Proof
Definitions occuring in Statement : 
cubical-interval-filler: cubical-interval-filler()
, 
Kan-filler: Kan-filler(X;filler)
, 
cubical-interval: cubical-interval()
Definitions unfolded in proof : 
Kan-filler: Kan-filler(X;filler)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nameset: nameset(L)
, 
fills-open_box: fills-open_box(X;I;bx;cube)
, 
fills-faces: fills-faces(X;I;bx;L)
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
open_box: open_box(X;I;J;x;i)
, 
cubical-interval-filler: cubical-interval-filler()
, 
top: Top
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
or: P ∨ Q
, 
cons: [a / b]
, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
true: True
, 
false: False
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
bnot: ¬bb
, 
assert: ↑b
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
nat: ℕ
, 
decidable: Dec(P)
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
listp: A List+
, 
ext-eq: A ≡ B
, 
length: ||as||
, 
list_ind: list_ind, 
nil: []
, 
is-face: is-face(X;I;bx;f)
, 
select: L[n]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
less_than: a < b
, 
squash: ↓T
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
cubical-interval: cubical-interval()
, 
I-cube: X(I)
, 
cube-set-restriction: f(s)
, 
pi2: snd(t)
, 
face-map: (x:=i)
, 
name-comp: (f o g)
, 
compose: f o g
, 
uext: uext(g)
, 
name-morph: name-morph(I;J)
, 
sq_stable: SqStable(P)
, 
face-name: face-name(f)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
face-direction: direction(f)
, 
face-dimension: dimension(f)
, 
nequal: a ≠ b ∈ T 
, 
isname: isname(z)
, 
l_member: (x ∈ l)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
cubical-interval-ap: u(L)
, 
istype: istype(T)
, 
respects-equality: respects-equality(S;T)
, 
l_subset: l_subset(T;as;bs)
Lemmas referenced : 
open_box_wf, 
cubical-interval_wf, 
subtype_rel_list, 
nameset_wf, 
coordinate_name_wf, 
int_seg_wf, 
list_wf, 
length_wf, 
I-face_wf, 
null_wf3, 
top_wf, 
istype-void, 
eqtt_to_assert, 
assert_of_null, 
list-cases, 
product_subtype_list, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
subtype_base_sq, 
int_subtype_base, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
equal-wf-T-base, 
nil_wf, 
nameset_subtype, 
hd_wf, 
l_member_wf, 
list-subtype, 
listp_properties, 
length_of_nil_lemma, 
length_of_cons_lemma, 
length_wf_nat, 
decidable__lt, 
istype-false, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
istype-less_than, 
open_box-nil, 
reduce_hd_cons_lemma, 
decidable__equal_int, 
int_seg_properties, 
int_seg_subtype_special, 
int_seg_cases, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
non_neg_length, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
face-cube_wf, 
face-dimension_wf, 
face-direction_wf, 
I-cube_wf, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
ob_pair_lemma, 
name-morph-ext, 
name-comp_wf, 
name-morph_wf, 
face-map_wf2, 
name-morph_subtype, 
list-diff-subset, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
member-list-diff, 
member_singleton, 
isname-nameset, 
select_wf, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
extd-nameset-nil, 
get_face_wf, 
pi2_wf, 
pi1_wf_top, 
set_subtype_base, 
le_wf, 
nameset_subtype_base, 
lelt_wf, 
iff_imp_equal_bool, 
le_int_wf, 
bfalse_wf, 
iff_functionality_wrt_iff, 
false_wf, 
assert_of_le_int, 
iff_weakening_equal, 
istype-le, 
pairwise-implies, 
not_wf, 
equal_wf, 
face-name_wf, 
nat_properties, 
select_member, 
cubical-interval-ap_wf, 
squash_wf, 
true_wf, 
adjacent-compatible-iff, 
subtype_rel_wf, 
istype-universe, 
list-diff2-sym, 
eq_int_eq_false, 
subtype-respects-equality, 
subtype_rel_self, 
istype-assert, 
face-map-comp-id
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
sqequalRule, 
natural_numberEquality, 
productElimination, 
isect_memberEquality_alt, 
voidElimination, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
promote_hyp, 
hypothesis_subsumption, 
applyLambdaEquality, 
instantiate, 
cumulativity, 
intEquality, 
independent_functionElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
because_Cache, 
baseClosed, 
setEquality, 
independent_pairFormation, 
addEquality, 
minusEquality, 
dependent_set_memberEquality_alt, 
approximateComputation, 
int_eqEquality, 
Error :memTop, 
imageElimination, 
functionExtensionality, 
imageMemberEquality, 
independent_pairEquality, 
hyp_replacement, 
sqequalBase, 
productEquality, 
productIsType, 
universeEquality
Latex:
Kan-filler(cubical-interval();cubical-interval-filler())
Date html generated:
2020_05_21-AM-10_52_36
Last ObjectModification:
2019_12_08-PM-07_05_51
Theory : cubical!sets
Home
Index