Nuprl Lemma : open_box-nil

[X:CubicalSet]. ∀[I:Cname List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
  open_box(X;I;[];x;i) ≡ {L:I-face(X;I) List| (||L|| 1 ∈ ℤ) ∧ (face-name(hd(L)) = <x, i> ∈ (nameset(I) × ℕ2))} 


Proof




Definitions occuring in Statement :  open_box: open_box(X;I;J;x;i) face-name: face-name(f) I-face: I-face(X;I) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname length: ||as|| hd: hd(l) nil: [] list: List int_seg: {i..j-} ext-eq: A ≡ B uall: [x:A]. B[x] and: P ∧ Q set: {x:A| B[x]}  pair: <a, b> product: x:A × B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B open_box: open_box(X;I;J;x;i) nat: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a ge: i ≥  guard: {T} int_seg: {i..j-} nameset: nameset(L) lelt: i ≤ j < k all: x:A. B[x] implies:  Q sq_stable: SqStable(P) squash: T coordinate_name: Cname int_upper: {i...} decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: pi1: fst(t) I-face: I-face(X;I) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cand: c∧ B cons: [a b] l_exists: (∃x∈L. P[x]) sq_type: SQType(T) select: L[n] l_all: (∀x∈L.P[x]) le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q subtract: m pairwise: (∀x,y∈L.  P[x; y]) less_than: a < b true: True face-name: face-name(f) pi2: snd(t) uiff: uiff(P;Q) rev_implies:  Q adjacent-compatible: adjacent-compatible(X;I;L)
Lemmas referenced :  length_wf_nat set_subtype_base le_wf int_subtype_base face-name_wf hd_wf int_seg_properties sq_stable__l_member coordinate_name_wf decidable__equal-coordinate_name sq_stable__le decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf open_box_wf nil_wf adjacent-compatible_wf l_member_wf l_subset_wf nameset_wf l_exists_wf I-face_wf equal_wf int_seg_wf l_all_wf2 not_wf subtract_wf itermSubtract_wf intformless_wf int_term_value_subtract_lemma int_formula_prop_less_lemma decidable__lt istype-le istype-less_than cons_wf pairwise_wf2 list_wf cubical-set_wf list-cases product_subtype_list length_of_nil_lemma length_of_cons_lemma reduce_hd_cons_lemma subtype_base_sq lelt_wf decidable__equal_int istype-false non_neg_length length_wf itermAdd_wf int_term_value_add_lemma member_singleton pi1_wf_top decidable__equal_int_seg le_antisymmetry_iff null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse l_subset_nil_left bool_wf ppcc-problem unit_wf2 iff_weakening_equal nameset_subtype l_all_cons cons_member pairwise-singleton l_all_single l_all_nil select_wf product_subtype_base nameset_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation lambdaEquality_alt sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt hypothesisEquality sqequalRule productIsType equalityIsType4 because_Cache productElimination extract_by_obid isectElimination hypothesis applyEquality intEquality closedConclusion natural_numberEquality independent_isectElimination equalityIsType1 dependent_functionElimination independent_functionElimination lambdaFormation_alt inhabitedIsType imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination universeIsType independent_pairEquality functionIsType productEquality setIsType instantiate cumulativity axiomEquality isectIsTypeImplies promote_hyp hypothesis_subsumption addEquality applyLambdaEquality unionEquality inlEquality_alt inlFormation_alt

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[I:Cname  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
    open\_box(X;I;[];x;i)  \mequiv{}  \{L:I-face(X;I)  List|  (||L||  =  1)  \mwedge{}  (face-name(hd(L))  =  <x,  i>)\} 



Date html generated: 2019_11_05-PM-00_28_11
Last ObjectModification: 2018_11_08-PM-01_16_01

Theory : cubical!sets


Home Index