Nuprl Lemma : ppcc-problem

ff tt supposing (inl tt) (inl ff) ∈ (𝔹?)


Proof




Definitions occuring in Statement :  bfalse: ff btrue: tt bool: 𝔹 uimplies: supposing a unit: Unit inl: inl x union: left right equal: t ∈ T
Definitions unfolded in proof :  uimplies: supposing a outl: outl(x) member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] prop: isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt true: True not: ¬A implies:  Q false: False
Lemmas referenced :  btrue_wf bfalse_wf and_wf equal_wf bool_wf unit_wf2 outl_wf assert_wf isl_wf btrue_neq_bfalse equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule introduction extract_by_obid hypothesis equalitySymmetry dependent_set_memberEquality independent_pairFormation equalityTransitivity sqequalHypSubstitution isectElimination thin unionEquality hypothesisEquality applyEquality lambdaEquality setElimination rename productElimination independent_isectElimination hyp_replacement Error :applyLambdaEquality,  natural_numberEquality setEquality independent_functionElimination voidElimination baseClosed

Latex:
ff  =  tt  supposing  (inl  tt)  =  (inl  ff)



Date html generated: 2016_10_25-AM-10_43_49
Last ObjectModification: 2016_07_12-AM-06_54_15

Theory : general


Home Index