Nuprl Lemma : pairwise-singleton
∀P,v:Top.  ((∀x,y∈[v].  P[x;y]) ⇐⇒ True)
Proof
Definitions occuring in Statement : 
pairwise: (∀x,y∈L.  P[x; y]), 
cons: [a / b], 
nil: [], 
top: Top, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
true: True
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
pairwise: (∀x,y∈L.  P[x; y]), 
member: t ∈ T, 
top: Top, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
true: True, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
so_apply: x[s], 
rev_implies: P ⇐ Q
Lemmas referenced : 
top_wf, 
true_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties, 
int_seg_wf, 
all_wf, 
length_of_nil_lemma, 
length_of_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
independent_pairFormation, 
natural_numberEquality, 
isectElimination, 
lambdaEquality, 
because_Cache, 
setElimination, 
rename, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll
Latex:
\mforall{}P,v:Top.    ((\mforall{}x,y\mmember{}[v].    P[x;y])  \mLeftarrow{}{}\mRightarrow{}  True)
Date html generated:
2016_05_14-PM-01_49_37
Last ObjectModification:
2016_01_15-AM-08_16_54
Theory : list_1
Home
Index