Nuprl Lemma : pairwise-singleton

P,v:Top.  ((∀x,y∈[v].  P[x;y]) ⇐⇒ True)


Proof




Definitions occuring in Statement :  pairwise: (∀x,y∈L.  P[x; y]) cons: [a b] nil: [] top: Top so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q true: True
Definitions unfolded in proof :  all: x:A. B[x] pairwise: (∀x,y∈L.  P[x; y]) member: t ∈ T top: Top iff: ⇐⇒ Q and: P ∧ Q implies:  Q true: True prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A so_apply: x[s] rev_implies:  Q
Lemmas referenced :  top_wf true_wf int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma itermConstant_wf intformle_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties int_seg_wf all_wf length_of_nil_lemma length_of_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis independent_pairFormation natural_numberEquality isectElimination lambdaEquality because_Cache setElimination rename hypothesisEquality productElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality computeAll

Latex:
\mforall{}P,v:Top.    ((\mforall{}x,y\mmember{}[v].    P[x;y])  \mLeftarrow{}{}\mRightarrow{}  True)



Date html generated: 2016_05_14-PM-01_49_37
Last ObjectModification: 2016_01_15-AM-08_16_54

Theory : list_1


Home Index