Nuprl Lemma : l_subset_nil_left
∀[T:Type]. ∀[L:T List].  l_subset(T;[];L)
Proof
Definitions occuring in Statement : 
l_subset: l_subset(T;as;bs), 
nil: [], 
list: T List, 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
l_subset: l_subset(T;as;bs), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uimplies: b supposing a, 
not: ¬A, 
false: False, 
prop: ℙ
Lemmas referenced : 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
l_member_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
sqequalRule, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    l\_subset(T;[];L)
 Date html generated: 
2016_05_14-AM-07_53_49
 Last ObjectModification: 
2015_12_26-PM-04_47_48
Theory : list_1
Home
Index