Nuprl Lemma : l_subset_nil_left

[T:Type]. ∀[L:T List].  l_subset(T;[];L)


Proof




Definitions occuring in Statement :  l_subset: l_subset(T;as;bs) nil: [] list: List uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] l_subset: l_subset(T;as;bs) all: x:A. B[x] implies:  Q member: t ∈ T uimplies: supposing a not: ¬A false: False prop:
Lemmas referenced :  null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut sqequalRule lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    l\_subset(T;[];L)



Date html generated: 2016_05_14-AM-07_53_49
Last ObjectModification: 2015_12_26-PM-04_47_48

Theory : list_1


Home Index