Nuprl Lemma : face-compatible-cubical-nerve1
∀[C:SmallCategory]. ∀[I:Cname List].
  ∀f1,f2:I-face(cubical-nerve(C);I).
    (face-compatible(cubical-nerve(C);I;f1;f2) ~ (¬((fst(f1)) = (fst(f2)) ∈ Cname))
    
⇒ (functor-comp(poset-functor(I-[fst(f1)];I-[fst(f1); fst(f2)];(fst(f2):=fst(snd(f2))));snd(snd(f1)))
       = functor-comp(poset-functor(I-[fst(f2)];I-[fst(f1); fst(f2)];(fst(f1):=fst(snd(f1))));snd(snd(f2)))
       ∈ Functor(poset-cat(I-[fst(f1); fst(f2)]);C)))
Proof
Definitions occuring in Statement : 
cubical-nerve: cubical-nerve(X)
, 
poset-functor: poset-functor(J;K;f)
, 
poset-cat: poset-cat(J)
, 
face-compatible: face-compatible(X;I;f1;f2)
, 
I-face: I-face(X;I)
, 
face-map: (x:=i)
, 
cname_deq: CnameDeq
, 
coordinate_name: Cname
, 
functor-comp: functor-comp(F;G)
, 
cat-functor: Functor(C1;C2)
, 
small-category: SmallCategory
, 
list-diff: as-bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
I-face: I-face(X;I)
, 
top: Top
, 
cubical-nerve: cubical-nerve(X)
, 
face-compatible: face-compatible(X;I;f1;f2)
, 
spreadn: spread3, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cube-set-restriction: f(s)
, 
I-cube: X(I)
, 
functor-ob: functor-ob(F)
Lemmas referenced : 
cubical-nerve-I-cube, 
I-face_wf, 
cubical-nerve_wf, 
list_wf, 
coordinate_name_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalRule, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].
    \mforall{}f1,f2:I-face(cubical-nerve(C);I).
        (face-compatible(cubical-nerve(C);I;f1;f2)  \msim{}  (\mneg{}((fst(f1))  =  (fst(f2))))
        {}\mRightarrow{}  (functor-comp(poset-functor(I-[fst(f1)];I-[fst(f1);  fst(f2)];(fst(f2):=fst(snd(f2))));
                                          snd(snd(f1)))
              =  functor-comp(poset-functor(I-[fst(f2)];I-[fst(f1);  fst(f2)];(fst(f1):=fst(snd(f1))));
                                            snd(snd(f2)))))
Date html generated:
2016_06_16-PM-07_02_08
Last ObjectModification:
2015_12_28-PM-04_18_30
Theory : cubical!sets
Home
Index