Nuprl Lemma : csm-ap-term-subset
∀[Gamma,K:j⊢]. ∀[s:K j⟶ Gamma]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[Z:{Gamma, phi ⊢ _:A}].
  ((Z)s ∈ {K, (phi)s ⊢ _:(A)s})
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
context-subset-map, 
csm-ap-term_wf, 
context-subset_wf, 
face-type_wf, 
csm-face-type, 
cubical-term_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-type_wf, 
cube_set_map_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
instantiate, 
applyEquality, 
inhabitedIsType
Latex:
\mforall{}[Gamma,K:j\mvdash{}].  \mforall{}[s:K  j{}\mrightarrow{}  Gamma].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].
\mforall{}[Z:\{Gamma,  phi  \mvdash{}  \_:A\}].
    ((Z)s  \mmember{}  \{K,  (phi)s  \mvdash{}  \_:(A)s\})
Date html generated:
2020_05_20-PM-02_57_29
Last ObjectModification:
2020_04_04-PM-05_12_06
Theory : cubical!type!theory
Home
Index