Nuprl Lemma : csm-ap-term-subset

[Gamma,K:j⊢]. ∀[s:K j⟶ Gamma]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[Z:{Gamma, phi ⊢ _:A}].
  ((Z)s ∈ {K, (phi)s ⊢ _:(A)s})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  context-subset-map csm-ap-term_wf context-subset_wf face-type_wf csm-face-type cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cube_set_map_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry universeIsType instantiate applyEquality inhabitedIsType

Latex:
\mforall{}[Gamma,K:j\mvdash{}].  \mforall{}[s:K  j{}\mrightarrow{}  Gamma].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].
\mforall{}[Z:\{Gamma,  phi  \mvdash{}  \_:A\}].
    ((Z)s  \mmember{}  \{K,  (phi)s  \mvdash{}  \_:(A)s\})



Date html generated: 2020_05_20-PM-02_57_29
Last ObjectModification: 2020_04_04-PM-05_12_06

Theory : cubical!type!theory


Home Index