Nuprl Lemma : csm-composition-exists

[Gamma,Delta:j⊢]. ∀[A:{Gamma ⊢ _}].  ∀s:Delta j⟶ Gamma. (Gamma ⊢ CompOp(A)  Delta ⊢ CompOp((A)s))


Proof




Definitions occuring in Statement :  composition-op: Gamma ⊢ CompOp(A) csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g
Lemmas referenced :  csm-composition_wf subtype_rel_self cube_set_map_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt rename introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule universeIsType inhabitedIsType

Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].
    \mforall{}s:Delta  j{}\mrightarrow{}  Gamma.  (Gamma  \mvdash{}  CompOp(A)  {}\mRightarrow{}  Delta  \mvdash{}  CompOp((A)s))



Date html generated: 2020_05_20-PM-03_51_23
Last ObjectModification: 2020_04_09-PM-01_11_24

Theory : cubical!type!theory


Home Index