Nuprl Lemma : csm-composition-exists
∀[Gamma,Delta:j⊢]. ∀[A:{Gamma ⊢ _}].  ∀s:Delta j⟶ Gamma. (Gamma ⊢ CompOp(A) 
⇒ Delta ⊢ CompOp((A)s))
Proof
Definitions occuring in Statement : 
composition-op: Gamma ⊢ CompOp(A)
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
cube_set_map: A ⟶ B
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
op-cat: op-cat(C)
, 
spreadn: spread4, 
cube-cat: CubeCat
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
type-cat: TypeCat
, 
names-hom: I ⟶ J
, 
cat-comp: cat-comp(C)
, 
compose: f o g
Lemmas referenced : 
csm-composition_wf, 
subtype_rel_self, 
cube_set_map_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
rename, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].
    \mforall{}s:Delta  j{}\mrightarrow{}  Gamma.  (Gamma  \mvdash{}  CompOp(A)  {}\mRightarrow{}  Delta  \mvdash{}  CompOp((A)s))
Date html generated:
2020_05_20-PM-03_51_23
Last ObjectModification:
2020_04_09-PM-01_11_24
Theory : cubical!type!theory
Home
Index