Nuprl Lemma : csm-fibrant-type_wf
∀[G,H:j⊢]. ∀[s:H j⟶ G]. ∀[FT:FibrantType(G)].  (csm-fibrant-type(G;H;s;FT) ∈ FibrantType(H))
Proof
Definitions occuring in Statement : 
csm-fibrant-type: csm-fibrant-type(G;H;s;FT)
, 
fibrant-type: FibrantType(X)
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fibrant-type: FibrantType(X)
, 
csm-fibrant-type: csm-fibrant-type(G;H;s;FT)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
csm-ap-type_wf, 
csm-composition_wf, 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
fibrant-type_wf, 
cube_set_map_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
dependent_pairEquality_alt, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
universeIsType, 
instantiate, 
applyEquality, 
inhabitedIsType
Latex:
\mforall{}[G,H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].  \mforall{}[FT:FibrantType(G)].    (csm-fibrant-type(G;H;s;FT)  \mmember{}  FibrantType(H))
Date html generated:
2020_05_20-PM-05_20_25
Last ObjectModification:
2020_04_12-AM-08_43_38
Theory : cubical!type!theory
Home
Index