Nuprl Lemma : csm-fibrant-type_wf

[G,H:j⊢]. ∀[s:H j⟶ G]. ∀[FT:FibrantType(G)].  (csm-fibrant-type(G;H;s;FT) ∈ FibrantType(H))


Proof




Definitions occuring in Statement :  csm-fibrant-type: csm-fibrant-type(G;H;s;FT) fibrant-type: FibrantType(X) cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fibrant-type: FibrantType(X) csm-fibrant-type: csm-fibrant-type(G;H;s;FT) subtype_rel: A ⊆B
Lemmas referenced :  csm-ap-type_wf csm-composition_wf composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 fibrant-type_wf cube_set_map_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution productElimination thin sqequalRule dependent_pairEquality_alt introduction extract_by_obid isectElimination hypothesisEquality hypothesis universeIsType instantiate applyEquality inhabitedIsType

Latex:
\mforall{}[G,H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].  \mforall{}[FT:FibrantType(G)].    (csm-fibrant-type(G;H;s;FT)  \mmember{}  FibrantType(H))



Date html generated: 2020_05_20-PM-05_20_25
Last ObjectModification: 2020_04_12-AM-08_43_38

Theory : cubical!type!theory


Home Index