Nuprl Lemma : ctt-term-induction
∀[P:CttTerm ⟶ ℙ{i'''''}]
  ((∀v:{v:varname()| ¬(v = nullvar() ∈ varname())} . P[varterm(v)])
  
⇒ (∀f:CttOp. ∀bts:{bts:(varname() List × CttTerm) List| 
                      (||bts|| = ||ctt-arity(f)|| ∈ ℤ)
                      ∧ (∀i:ℕ||bts||
                           ((||fst(bts[i])|| = (fst(ctt-arity(f)[i])) ∈ ℤ)
                           ∧ (ctt-kind(snd(bts[i])) = (snd(ctt-arity(f)[i])) ∈ ℤ)))} .
        ((∀i:ℕ||bts||. P[snd(bts[i])]) 
⇒ P[mkwfterm(f;bts)]))
  
⇒ {∀t:CttTerm. P[t]})
Proof
Definitions occuring in Statement : 
ctt-term: CttTerm
, 
ctt-arity: ctt-arity(x)
, 
ctt-kind: ctt-kind(t)
, 
ctt-op: CttOp
, 
mkwfterm: mkwfterm(f;bts)
, 
varterm: varterm(v)
, 
nullvar: nullvar()
, 
varname: varname()
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
wf-bound-terms: wf-bound-terms(opr;sort;arity;f)
, 
ctt-term: CttTerm
Lemmas referenced : 
wf-term-induction, 
ctt-op_wf, 
ctt-kind_wf, 
term_wf, 
ctt-arity_wf
Rules used in proof : 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
cumulativity, 
hypothesis, 
dependent_functionElimination, 
lambdaEquality_alt, 
hypothesisEquality, 
universeIsType, 
sqequalRule
Latex:
\mforall{}[P:CttTerm  {}\mrightarrow{}  \mBbbP{}\{i'''''\}]
    ((\mforall{}v:\{v:varname()|  \mneg{}(v  =  nullvar())\}  .  P[varterm(v)])
    {}\mRightarrow{}  (\mforall{}f:CttOp.  \mforall{}bts:\{bts:(varname()  List  \mtimes{}  CttTerm)  List| 
                                            (||bts||  =  ||ctt-arity(f)||)
                                            \mwedge{}  (\mforall{}i:\mBbbN{}||bts||
                                                      ((||fst(bts[i])||  =  (fst(ctt-arity(f)[i])))
                                                      \mwedge{}  (ctt-kind(snd(bts[i]))  =  (snd(ctt-arity(f)[i])))))\}  .
                ((\mforall{}i:\mBbbN{}||bts||.  P[snd(bts[i])])  {}\mRightarrow{}  P[mkwfterm(f;bts)]))
    {}\mRightarrow{}  \{\mforall{}t:CttTerm.  P[t]\})
Date html generated:
2020_05_20-PM-08_20_30
Last ObjectModification:
2020_05_13-PM-02_26_52
Theory : cubical!type!theory
Home
Index