Nuprl Lemma : ctt-kind_wf

[t:term(CttOp)]. (ctt-kind(t) ∈ ℕ)


Proof




Definitions occuring in Statement :  ctt-kind: ctt-kind(t) ctt-op: CttOp term: term(opr) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ctt-kind: ctt-kind(t) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False bfalse: ff subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  isvarterm_wf ctt-op_wf eqtt_to_assert istype-void istype-le uiff_transitivity equal-wf-T-base bool_wf assert_wf bnot_wf not_wf eqff_to_assert assert_of_bnot eq_atom_wf ctt-op-sort_wf term-opr_wf equal-wf-base set_subtype_base l_member_wf cons_wf nil_wf istype-atom atom_subtype_base assert_of_eq_atom iff_transitivity iff_weakening_uiff istype-assert term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesis hypothesisEquality inhabitedIsType lambdaFormation_alt unionElimination equalityElimination because_Cache productElimination independent_isectElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation voidElimination equalityTransitivity equalitySymmetry baseClosed independent_functionElimination applyEquality lambdaEquality_alt setElimination rename tokenEquality atomEquality equalityIstype sqequalBase functionIsType dependent_functionElimination axiomEquality universeIsType

Latex:
\mforall{}[t:term(CttOp)].  (ctt-kind(t)  \mmember{}  \mBbbN{})



Date html generated: 2020_05_20-PM-08_18_07
Last ObjectModification: 2020_02_25-PM-01_19_55

Theory : cubical!type!theory


Home Index