Nuprl Lemma : cubical-refl-app-snd
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}].  ((refl(a))p @ q = (a)p ∈ {X.𝕀 ⊢ _:(A)p})
Proof
Definitions occuring in Statement : 
cubical-refl: refl(a)
, 
cubical-path-app: pth @ r
, 
interval-type: 𝕀
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
cubical-refl: refl(a)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
term-to-path-app-snd, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-term_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
thin, 
instantiate, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
universeIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].    ((refl(a))p  @  q  =  (a)p)
Date html generated:
2020_05_20-PM-03_22_10
Last ObjectModification:
2020_04_06-PM-06_39_40
Theory : cubical!type!theory
Home
Index