Nuprl Lemma : cubical-refl-app-snd

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a:{X ⊢ _:A}].  ((refl(a))p (a)p ∈ {X.𝕀 ⊢ _:(A)p})


Proof




Definitions occuring in Statement :  cubical-refl: refl(a) cubical-path-app: pth r interval-type: 𝕀 cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  cubical-refl: refl(a) uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  term-to-path-app-snd cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-term_wf cubical-type_wf cubical_set_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt thin instantiate isectElimination hypothesisEquality applyEquality hypothesis universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].    ((refl(a))p  @  q  =  (a)p)



Date html generated: 2020_05_20-PM-03_22_10
Last ObjectModification: 2020_04_06-PM-06_39_40

Theory : cubical!type!theory


Home Index