Nuprl Lemma : cubical_context_val_wf
∀[ctxt:CubicalContext]. ∀[v:varname()].
  cubical_context_val(ctxt;v) ∈ cttTerm(fst(ctxt)) supposing in-context-dom(ctxt;v)
Proof
Definitions occuring in Statement : 
cubical_context_val: cubical_context_val(ctxt;v)
, 
in-context-dom: in-context-dom(ctxt;v)
, 
cubical_context: CubicalContext
, 
ctt-term-meaning: cttTerm(X)
, 
varname: varname()
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
cubical_context_val: cubical_context_val(ctxt;v)
, 
cubical_context: CubicalContext
, 
spreadn: spread3, 
in-context-dom: in-context-dom(ctxt;v)
, 
pi1: fst(t)
, 
prop: ℙ
Lemmas referenced : 
l_member_wf, 
varname_wf, 
in-context-dom_wf, 
cubical_context_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
hypothesis, 
universeIsType, 
extract_by_obid, 
isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[ctxt:CubicalContext].  \mforall{}[v:varname()].
    cubical\_context\_val(ctxt;v)  \mmember{}  cttTerm(fst(ctxt))  supposing  in-context-dom(ctxt;v)
Date html generated:
2020_05_20-PM-08_03_01
Last ObjectModification:
2020_05_03-PM-05_52_06
Theory : cubical!type!theory
Home
Index