Nuprl Lemma : discrete-path-equal
∀[T:Type]. ∀[X:j⊢]. ∀[a,b:{X ⊢ _:discr(T)}]. ∀[p1,p2:{X ⊢ _:(Path_discr(T) a b)}].
  (p1 = p2 ∈ {X ⊢ _:(Path_discr(T) a b)})
Proof
Definitions occuring in Statement : 
path-type: (Path_A a b)
, 
discrete-cubical-type: discr(T)
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
discrete-path, 
cubical-term_wf, 
path-type_wf, 
discrete-cubical-type_wf, 
cubical_set_wf, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
universeIsType, 
instantiate, 
cumulativity, 
inhabitedIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[a,b:\{X  \mvdash{}  \_:discr(T)\}].  \mforall{}[p1,p2:\{X  \mvdash{}  \_:(Path\_discr(T)  a  b)\}].    (p1  =  p2)
Date html generated:
2020_05_20-PM-03_37_03
Last ObjectModification:
2020_04_06-PM-07_03_16
Theory : cubical!type!theory
Home
Index