Nuprl Lemma : discrete-path-equal

[T:Type]. ∀[X:j⊢]. ∀[a,b:{X ⊢ _:discr(T)}]. ∀[p1,p2:{X ⊢ _:(Path_discr(T) b)}].
  (p1 p2 ∈ {X ⊢ _:(Path_discr(T) b)})


Proof




Definitions occuring in Statement :  path-type: (Path_A b) discrete-cubical-type: discr(T) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  discrete-path cubical-term_wf path-type_wf discrete-cubical-type_wf cubical_set_wf istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality equalityTransitivity equalitySymmetry because_Cache universeIsType instantiate cumulativity inhabitedIsType universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[a,b:\{X  \mvdash{}  \_:discr(T)\}].  \mforall{}[p1,p2:\{X  \mvdash{}  \_:(Path\_discr(T)  a  b)\}].    (p1  =  p2)



Date html generated: 2020_05_20-PM-03_37_03
Last ObjectModification: 2020_04_06-PM-07_03_16

Theory : cubical!type!theory


Home Index