Nuprl Lemma : empty-context-lemma

[Gamma:j⊢]. ∀[A,x:Top].  (x ∈ {Gamma ⊢ _:A}) supposing ∀I:fset(ℕ). Gamma(I))


Proof




Definitions occuring in Statement :  cubical-term: {X ⊢ _:A} I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] not: ¬A member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T all: x:A. B[x] not: ¬A implies:  Q false: False
Lemmas referenced :  istype-top fset_wf nat_wf I_cube_wf istype-void cubical_set_wf empty-context-eq-lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt because_Cache cut introduction extract_by_obid hypothesis sqequalRule functionIsType universeIsType sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A,x:Top].    (x  \mmember{}  \{Gamma  \mvdash{}  \_:A\})  supposing  \mforall{}I:fset(\mBbbN{}).  (\mneg{}Gamma(I))



Date html generated: 2020_05_20-PM-04_12_20
Last ObjectModification: 2020_04_10-PM-04_48_08

Theory : cubical!type!theory


Home Index